


Wie sind künstliche Intelligenz und maschinelles Lernen bereit, die Spielregeln für den Rechenzentrumsbetrieb zu verändern?
Rechenzentren stehen heute vor einer Herausforderung, die nahezu unlösbar scheint. Während der Rechenzentrumsbetrieb noch nie so ausgelastet war, stehen die Rechenzentrumsbetriebsteams unter dem Druck, den Energieverbrauch im Rahmen der CO2-Reduktionsziele des Unternehmens zu senken. Zudem setzen stark steigende Strompreise die Rechenzentrumsbetreiber unter Budgetdruck.
Da sich Rechenzentren auf die Unterstützung der wesentlichen Technologiedienste konzentrieren, die Menschen zunehmend für ihre Arbeit und ihr Leben benötigen, ist es kein Wunder, dass der Betrieb von Rechenzentren so anstrengend ist. Ohne Anzeichen einer Verlangsamung sehen wir einen erheblichen Anstieg der Datennutzung im Zusammenhang mit Video, Speicher, Computeranforderungen, intelligenter IoT-Integration und der Einführung der 5G-Konnektivität. Doch trotz zunehmender Arbeitsbelastung arbeiten viele der heutigen Rechenzentrumseinrichtungen leider nicht effizient genug.
Das ist nicht verwunderlich, wenn man bedenkt, dass die durchschnittliche Nutzungsdauer eines Rechenzentrums über 20 Jahre beträgt. Die Effizienz hängt immer von der ursprünglichen Auslegung der Rechenzentrumsanlage ab und basiert auf erwarteten, längst überschrittenen IT-Lasten. Gleichzeitig ist der Wandel ein ständiger Wandel, da sich Plattformen, Gerätedesigns, Topologien, Leistungsdichten und Kühlanforderungen mit der Weiterentwicklung neuer Anwendungen weiterentwickeln. Das Ergebnis ist, dass Rechenzentren auf der ganzen Welt oft Schwierigkeiten haben, aktuelle und geplante IT-Lasten mit ihrer kritischen Infrastruktur in Einklang zu bringen. Diese Situation wird sich mit zunehmender Nachfrage nach Rechenzentren noch verschärfen. Analystenprognosen zufolge wird die Arbeitslast in Rechenzentren bis 2025 weiterhin jährlich um etwa 20 % zunehmen.
Herkömmliche Rechenzentrumstechnologien und -methoden können diese sich wandelnden Anforderungen nur schwer erfüllen. Die Priorisierung der Verfügbarkeit geht größtenteils zu Lasten der Effizienz, da zu viel Arbeit immer noch auf der Erfahrung des Betriebspersonals und dem Vertrauen auf die Richtigkeit der Annahmen beruht. Leider gibt es Hinweise darauf, dass dieses Modell nicht mehr gilt. Untersuchungen des Fernüberwachungsanbieters EkkoSense zeigen, dass durchschnittlich 15 % der IT-Racks in Rechenzentren außerhalb der Temperatur- und Luftfeuchtigkeitsrichtlinien von ASHRAE betrieben werden und der Energieverbrauch für die Kühlung von Rechenzentren aufgrund von Ineffizienz bis zu 60 % beträgt. Dies stellt ein großes Problem dar, da das Uptime Institute schätzt, dass in Rechenzentren weltweit rund 18 Milliarden US-Dollar an verschwendeter Energie durch ineffiziente Kühlung und Luftstrommanagement verloren gehen. Dies entspricht einer Verschwendung von rund 150 Milliarden Kilowattstunden Strom.
Angesichts der Tatsache, dass 35 % der von der Rechenzentrumsinfrastruktur verbrauchten Energie für die Kühlung aufgewendet werden, ist klar, dass herkömmliche Methoden zur Leistungsoptimierung enorme Möglichkeiten zur Erzielung von Effizienzsteigerungen verpassen. Eine Umfrage von EkkoSense zeigt, dass ein Drittel der ungeplanten Ausfälle von Rechenzentren durch Überhitzungsprobleme verursacht werden. Es müssen verschiedene Wege zur Bewältigung dieses Problems gefunden werden, die den Rechenzentrumsbetriebsteams hervorragende Möglichkeiten bieten können, die Verfügbarkeit sicherzustellen und die Effizienz zu verbessern.
Einschränkungen der herkömmlichen Überwachungstechnologie
Leider überwachen und melden derzeit nur etwa 5 % der Betriebsteams die Temperaturen ihrer Rechenzentrumsgeräte pro Rack. Darüber hinaus können DCIM und herkömmliche Überwachungslösungen Trenddaten liefern und so eingerichtet werden, dass sie im Falle eines Ausfalls Warnungen auslösen, diese Maßnahmen reichen jedoch nicht aus. Ihnen fehlen die analytischen Fähigkeiten, um Einblicke in die Ursachen von Problemen zu gewinnen und zu erfahren, wie diese gelöst und in Zukunft vermieden werden können.
Betriebsteams sind sich bewusst, dass diese traditionelle Überwachungstechnologie ihre Grenzen hat, aber sie wissen auch, dass sie einfach nicht über die Ressourcen und die Zeit verfügen, um die vorhandenen Daten zu nutzen und aus deren Analyse aussagekräftige Erkenntnisse abzuleiten. Die gute Nachricht ist, dass es jetzt Technologielösungen gibt, die Rechenzentren bei der Lösung dieses Problems unterstützen.
Jetzt ist es an der Zeit, Rechenzentren mit maschinellem Lernen und künstlicher Intelligenz zu integrieren
Die Anwendung von maschinellem Lernen und künstlicher Intelligenz hat ein neues Paradigma für die Abwicklung des Rechenzentrumsbetriebs geschaffen. Anstatt mit zu vielen Leistungsdaten überschwemmt zu werden, können Betriebsteams jetzt maschinelles Lernen nutzen, um detailliertere Daten zu sammeln – was bedeutet, dass sie Echtzeitzugriff auf den Betrieb ihrer Rechenzentren erhalten können. Der Schlüssel liegt darin, sie zugänglich zu machen, und die Verwendung intelligenter 3D-Visualisierungen ist eine großartige Möglichkeit, den Rechenzentrumsteams die Interpretation von Leistung und Daten auf einer tieferen Ebene zu erleichtern: zum Beispiel durch die Anzeige von Änderungen und die Hervorhebung von Anomalien.
In der nächsten Phase werden maschinelles Lernen und Analysen der künstlichen Intelligenz eingesetzt, um umsetzbare Erkenntnisse zu liefern. Durch die Erweiterung von Messdatensätzen mit Algorithmen für maschinelles Lernen können Rechenzentrumsteams sofort von leicht verständlichen Erkenntnissen profitieren, die sie bei ihren Optimierungsentscheidungen in Echtzeit unterstützen. Die Kombination aus granularer Datenerfassung in Echtzeit und Analyse durch KI/maschinelles Lernen alle fünf Minuten ermöglicht es den Betriebsmitarbeitern, nicht nur zu sehen, was in ihren Rechenzentrumseinrichtungen passiert, sondern auch herauszufinden, warum und was dagegen getan werden sollte.
Durch KI und maschinelles Lernen unterstützte Analysen können auch die Erkenntnisse liefern, die erforderlich sind, um umsetzbare Änderungen in Schlüsselbereichen wie optimalen Sollwerten, Bodengitteranordnung, Kühlanlagenbetrieb und Anpassung der Lüftergeschwindigkeit zu empfehlen. Die thermische Analyse zeigt auch den besten Standort für die Installation des Racks. Und da KI Echtzeittransparenz ermöglicht, können Rechenzentrumsteams schnell sofortiges Leistungsfeedback zu allen implementierten Änderungen erhalten.
Künstliche Intelligenz und maschinelles Lernen zur Unterstützung des Rechenzentrumsbetriebs
Angesichts des Drucks, CO2-Emissionen zu reduzieren und die Auswirkungen steigender Strompreise zu minimieren, müssen Rechenzentrumsteams ihre Zuverlässigkeits- und Effizienzziele erreichen, wenn sie dies tun Um ihre Ziele zu erreichen, bedarf es neuer Optimierungsunterstützung.
Der Einsatz der neuesten maschinellen Lern- und auf künstlicher Intelligenz basierenden Optimierungsmethoden für Rechenzentren kann durch die Reduzierung von Kühlenergie und -verbrauch sicherlich eine Wirkung erzielen – mit sofortigen Ergebnissen innerhalb von Wochen. Indem sie granulare Daten in den Vordergrund ihrer Optimierungspläne stellen, können Rechenzentrumsteams nicht nur das Risiko von Überhitzung und Stromausfällen eliminieren, sondern auch eine durchschnittliche Reduzierung der Kühlenergiekosten und CO2-Emissionen um 30 % gewährleisten. Es ist schwer zu ignorieren, welche Auswirkungen diese Art von Kosteneinsparungen haben kann, insbesondere in einer Zeit, in der die Strompreise schnell steigen. Vorbei sind die Zeiten, in denen Risiko und Verfügbarkeit für die Optimierung abgewogen wurden, und Technologien für künstliche Intelligenz und maschinelles Lernen werden im Rechenzentrumsbetrieb im Vordergrund stehen.
Das obige ist der detaillierte Inhalt vonWie sind künstliche Intelligenz und maschinelles Lernen bereit, die Spielregeln für den Rechenzentrumsbetrieb zu verändern?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



Diese Seite berichtete am 27. Juni, dass Jianying eine von FaceMeng Technology, einer Tochtergesellschaft von ByteDance, entwickelte Videobearbeitungssoftware ist, die auf der Douyin-Plattform basiert und grundsätzlich kurze Videoinhalte für Benutzer der Plattform produziert Windows, MacOS und andere Betriebssysteme. Jianying kündigte offiziell die Aktualisierung seines Mitgliedschaftssystems an und führte ein neues SVIP ein, das eine Vielzahl von KI-Schwarztechnologien umfasst, wie z. B. intelligente Übersetzung, intelligente Hervorhebung, intelligente Verpackung, digitale menschliche Synthese usw. Preislich beträgt die monatliche Gebühr für das Clipping von SVIP 79 Yuan, die Jahresgebühr 599 Yuan (Hinweis auf dieser Website: entspricht 49,9 Yuan pro Monat), das fortlaufende Monatsabonnement beträgt 59 Yuan pro Monat und das fortlaufende Jahresabonnement beträgt 499 Yuan pro Jahr (entspricht 41,6 Yuan pro Monat). Darüber hinaus erklärte der Cut-Beamte auch, dass diejenigen, die den ursprünglichen VIP abonniert haben, das Benutzererlebnis verbessern sollen

Verbessern Sie die Produktivität, Effizienz und Genauigkeit der Entwickler, indem Sie eine abrufgestützte Generierung und ein semantisches Gedächtnis in KI-Codierungsassistenten integrieren. Übersetzt aus EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, Autor JanakiramMSV. Obwohl grundlegende KI-Programmierassistenten natürlich hilfreich sind, können sie oft nicht die relevantesten und korrektesten Codevorschläge liefern, da sie auf einem allgemeinen Verständnis der Softwaresprache und den gängigsten Mustern beim Schreiben von Software basieren. Der von diesen Coding-Assistenten generierte Code eignet sich zur Lösung der von ihnen zu lösenden Probleme, entspricht jedoch häufig nicht den Coding-Standards, -Konventionen und -Stilen der einzelnen Teams. Dabei entstehen häufig Vorschläge, die geändert oder verfeinert werden müssen, damit der Code in die Anwendung übernommen wird

Um mehr über AIGC zu erfahren, besuchen Sie bitte: 51CTOAI.x Community https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou unterscheidet sich von der traditionellen Fragendatenbank, die überall im Internet zu sehen ist erfordert einen Blick über den Tellerrand hinaus. Large Language Models (LLMs) gewinnen in den Bereichen Datenwissenschaft, generative künstliche Intelligenz (GenAI) und künstliche Intelligenz zunehmend an Bedeutung. Diese komplexen Algorithmen verbessern die menschlichen Fähigkeiten, treiben Effizienz und Innovation in vielen Branchen voran und werden zum Schlüssel für Unternehmen, um wettbewerbsfähig zu bleiben. LLM hat ein breites Anwendungsspektrum und kann in Bereichen wie der Verarbeitung natürlicher Sprache, der Textgenerierung, der Spracherkennung und Empfehlungssystemen eingesetzt werden. Durch das Lernen aus großen Datenmengen ist LLM in der Lage, Text zu generieren

Large Language Models (LLMs) werden auf riesigen Textdatenbanken trainiert und erwerben dort große Mengen an realem Wissen. Dieses Wissen wird in ihre Parameter eingebettet und kann dann bei Bedarf genutzt werden. Das Wissen über diese Modelle wird am Ende der Ausbildung „verdinglicht“. Am Ende des Vortrainings hört das Modell tatsächlich auf zu lernen. Richten Sie das Modell aus oder verfeinern Sie es, um zu erfahren, wie Sie dieses Wissen nutzen und natürlicher auf Benutzerfragen reagieren können. Aber manchmal reicht Modellwissen nicht aus, und obwohl das Modell über RAG auf externe Inhalte zugreifen kann, wird es als vorteilhaft angesehen, das Modell durch Feinabstimmung an neue Domänen anzupassen. Diese Feinabstimmung erfolgt mithilfe von Eingaben menschlicher Annotatoren oder anderer LLM-Kreationen, wobei das Modell auf zusätzliches Wissen aus der realen Welt trifft und dieses integriert

Laut Nachrichten dieser Website vom 18. Juni stellte Samsung Semiconductor kürzlich in seinem Technologieblog sein Solid-State-Laufwerk BM1743 der nächsten Generation für Rechenzentren vor, das mit dem neuesten QLC-Flash-Speicher (v7) ausgestattet ist. ▲Samsung QLC Solid-State-Laufwerk für Rechenzentren BM1743 Laut TrendForce im April hatten im Bereich der QLC-Solid-State-Laufwerke für Rechenzentren nur Samsung und Solidigm, eine Tochtergesellschaft von SK Hynix, die Unternehmenskundenüberprüfung bestanden diese Zeit. Im Vergleich zum v5QLCV-NAND der vorherigen Generation (Hinweis auf dieser Website: Samsung v6V-NAND verfügt nicht über QLC-Produkte) hat der Samsung v7QLCV-NAND-Flash-Speicher die Anzahl der Stapelschichten fast verdoppelt und auch die Speicherdichte wurde erheblich verbessert. Gleichzeitig ist die Glätte von v7QLCV-NAND gewährleistet

Herausgeber | Der Frage-Antwort-Datensatz (QA) von ScienceAI spielt eine entscheidende Rolle bei der Förderung der Forschung zur Verarbeitung natürlicher Sprache (NLP). Hochwertige QS-Datensätze können nicht nur zur Feinabstimmung von Modellen verwendet werden, sondern auch effektiv die Fähigkeiten großer Sprachmodelle (LLMs) bewerten, insbesondere die Fähigkeit, wissenschaftliche Erkenntnisse zu verstehen und zu begründen. Obwohl es derzeit viele wissenschaftliche QS-Datensätze aus den Bereichen Medizin, Chemie, Biologie und anderen Bereichen gibt, weisen diese Datensätze immer noch einige Mängel auf. Erstens ist das Datenformular relativ einfach, die meisten davon sind Multiple-Choice-Fragen. Sie sind leicht auszuwerten, schränken jedoch den Antwortauswahlbereich des Modells ein und können die Fähigkeit des Modells zur Beantwortung wissenschaftlicher Fragen nicht vollständig testen. Im Gegensatz dazu offene Fragen und Antworten

Maschinelles Lernen ist ein wichtiger Zweig der künstlichen Intelligenz, der Computern die Möglichkeit gibt, aus Daten zu lernen und ihre Fähigkeiten zu verbessern, ohne explizit programmiert zu werden. Maschinelles Lernen hat ein breites Anwendungsspektrum in verschiedenen Bereichen, von der Bilderkennung und der Verarbeitung natürlicher Sprache bis hin zu Empfehlungssystemen und Betrugserkennung, und es verändert unsere Lebensweise. Im Bereich des maschinellen Lernens gibt es viele verschiedene Methoden und Theorien, von denen die fünf einflussreichsten Methoden als „Fünf Schulen des maschinellen Lernens“ bezeichnet werden. Die fünf Hauptschulen sind die symbolische Schule, die konnektionistische Schule, die evolutionäre Schule, die Bayes'sche Schule und die Analogieschule. 1. Der Symbolismus, auch Symbolismus genannt, betont die Verwendung von Symbolen zum logischen Denken und zum Ausdruck von Wissen. Diese Denkrichtung glaubt, dass Lernen ein Prozess der umgekehrten Schlussfolgerung durch das Vorhandene ist

Herausgeber |. KX Im Bereich der Arzneimittelforschung und -entwicklung ist die genaue und effektive Vorhersage der Bindungsaffinität von Proteinen und Liganden für das Arzneimittelscreening und die Arzneimitteloptimierung von entscheidender Bedeutung. Aktuelle Studien berücksichtigen jedoch nicht die wichtige Rolle molekularer Oberflächeninformationen bei Protein-Ligand-Wechselwirkungen. Auf dieser Grundlage schlugen Forscher der Universität Xiamen ein neuartiges Framework zur multimodalen Merkmalsextraktion (MFE) vor, das erstmals Informationen über Proteinoberfläche, 3D-Struktur und -Sequenz kombiniert und einen Kreuzaufmerksamkeitsmechanismus verwendet, um verschiedene Modalitäten zu vergleichen Ausrichtung. Experimentelle Ergebnisse zeigen, dass diese Methode bei der Vorhersage von Protein-Ligand-Bindungsaffinitäten Spitzenleistungen erbringt. Darüber hinaus belegen Ablationsstudien die Wirksamkeit und Notwendigkeit der Proteinoberflächeninformation und der multimodalen Merkmalsausrichtung innerhalb dieses Rahmens. Verwandte Forschungen beginnen mit „S
