


Der weltweit erste Raumtemperatur-Quantencomputer kommt auf den Markt! Es ist kein absoluter Nullpunkt erforderlich, der Hauptkern ist tatsächlich „mit Diamanten besetzt'.
Quantencomputing ist derzeit einer der spannendsten (und gehyptesten) Forschungsbereiche. In dieser Hinsicht hat das deutsch-australische Startup Quantum Brilliance kürzlich Großes geleistet. Der weltweit erste diamantbasierte Raumtemperatur-Quantencomputer wurde erfolgreich im fernen Ozeanien installiert!
Der weltweit erste kommerzielle Raumtemperatur-Quantencomputer
Einfach ausgedrückt: Der Quantencomputer von Quantum Brilliance benötigt keinen absoluten Nullpunkt oder ein komplexes Lasersystem. Warum lohnt es sich also, über die Raumtemperatur zu sprechen?
Die Grundidee eines Quantencomputersystems besteht darin, dass Qubits in einem Zustand sein können, der nicht nur „1“ oder „0“ ist, sondern in einer Kombination, die als „Überlagerungszustand“ bezeichnet wird. Das bedeutet, dass sich zwei Qubits im Überlagerungszustand „01“, „10“, „11“ und „00“ befinden können und somit mehr Zustände und Daten darstellen.
Aber hier kommt das Problem: Diese Systeme reagieren immer noch sehr empfindlich auf ihre Umgebung. Sie können einen bestimmten Überlagerungszustand nur für eine sehr begrenzte Zeit aufrechterhalten, nämlich die „Kohärenzzeit“. Ist die Kohärenzzeit begrenzt, kann es zu Fehlern in den Berechnungen des Qubits kommen.
Bei herkömmlichen Quantencomputern sind spezielle Kühlmethoden erforderlich, um die Quantenkohärenz sicherzustellen, bei Raumtemperatur-Quantencomputern kann dieser Schritt jedoch entfallen. Quantenkohärenz, also die Tatsache, dass sich Teilchen wie Wellen verhalten müssen, ist die Grundlage aller Quanteneffekte.
Wie erreicht Pawsey also den Raumtemperaturbetrieb von Quantencomputern?
Hier geht es um die einzigartige Quantencomputing-Methode von Quantum Brilliance.
Sie nutzten die natürlich vorkommenden Stickstofflochzentren in synthetischem Diamant, ohne herkömmliche Ionenketten, Silizium-Quantenpunkte oder supraleitende Übertragungs-Qubits zu verwenden.
Ein Stickstoffloch bezeichnet einen Defekt im Diamantgitter, das aus an das Loch angrenzenden Ersatzstickstoffatomen besteht.
Diese Stickstofflochzentren haben die Fähigkeit, Photolumineszenz zu erzeugen und können den Spin des Qubits basierend auf den Eigenschaften des emittierten Lichts lesen, ohne dass eine direkte Interaktion mit dem Qubit erforderlich ist. Viele Techniken wie Magnetfelder, elektrische Felder, Mikrowellenstrahlung und Licht können direkt zur Steuerung des Elektronenspins von Stickstofflöchern eingesetzt werden.
Diamantgitterstruktur mit Stickstofflöchern Laut dem zuvor veröffentlichten Whitepaper des Unternehmens besteht der bei Raumtemperatur betriebene Diamant-Quantencomputer aus einer Reihe von Prozessorknoten.
Jeder Prozessorknoten besteht aus einem Stickstoffloch (NV)-Zentrum und einer Ansammlung von Kernspins: dem intrinsischen Stickstoff-Kernspin und bis zu 4 benachbarten 13C-Kernspin-Verunreinigungen. Der Kernspin fungiert als Qubit des Computers und das Stickstoffloch dient als Quantenbus, der die Initialisierung und das Auslesen von Qubits sowie Multi-Qubit-Operationen innerhalb und zwischen Knoten vermittelt.
Die nachgewiesene Initialisierungs- und Auslesetreue übersteigt im Jahr 2021 99,6 %, während die Gating-Genauigkeit bei Einzel- und Doppel-Qubits 99,99 % bzw. 99 % übersteigt. Die entsprechende Gating-Zeit beträgt etwa 10 Mikrosekunden.
Einige Arbeiten haben gezeigt, dass bei Verwendung fortschrittlicherer Quantenkontrolltechnologie die Genauigkeit des Gates 99,999 % überschreiten und die Gate-Betriebszeit weniger als 1 Mikrosekunde betragen kann.
Aufgrund von Einschränkungen bei der Herstellung von Implantatmasken und der Streuung implantierter Ionen kann diese Genauigkeit mit bestehenden „Top-Down“-Stickstoffionenimplantationstechniken zur Schaffung von NV-Zentren nicht erreicht werden.
Eine der wichtigsten Erfindungen von Quantum Brilliance ist eine „Bottom-up“-Präzisionsdiamantenherstellungstechnologie auf atomarer Ebene, die die oben genannten Grenzen durch Oberflächenchemie und Photolithographie umgeht. Eine weitere wichtige Erfindung ist der integrierte Quantenchip, der die elektrischen, optischen und magnetischen Steuerungssysteme des Diamant-Quantencomputers miniaturisiert und integriert.
Allerdings verfügt das System laut Whitepaper nur über 5 Qubits, was sich von den 72 Qubits von Google unterscheidet Im Vergleich ist es offensichtlich noch weit weg.
Quantenbeschleuniger + Supercomputing =?
Mittlerweile werden die meisten Quantencomputerarbeiten in Simulationsumgebungen auf Plattformen wie IBMs Quiskit und Nvidias cuQuantum-Initiative durchgeführt. Darüber hinaus ist der aktuelle Mainstream von Quantencomputern die Größe von Großrechnern, die in der Regel mehrere Quadratmeter oder sogar die Größe eines Raumes einnehmen.
Das liegt daran, dass verschiedene Quantenhardware die Größe von Großrechnern begrenzt, da es sich um große Maschinen handelt, die extrem niedrige Temperaturen und/oder extrem niedrige Drücke und eine komplexe Steuerung erfordern Systeme zum Betrieb. Wenn es keine Raumtemperatur-Quantencomputer gibt, dann wird die Situation so aussehen, dass es in jedem Supercomputing- und Cloud-Computing-Einrichtungsgebiet der Welt mehrere Quanten-Mainframes gibt, es aber nicht möglich ist, sie im Ausmaß einer breiten Anwendung zu fördern. Durch den Einsatz von Raumtemperatur-Quantencomputern in Supercomputing-Zentren können Forscher die Rechenleistung, Wartung und Integration vor Ort wirklich nutzen.
Gleichzeitig mit Pawsey Supercomputing Die Zusammenarbeit des Forschungszentrums zielt auch darauf ab, die Paarung von Quanten- und klassischen Systemen zu beschleunigen, indem eine erste Hybridumgebung geschaffen wird, die Engpässe diagnostizieren und mögliche Verbesserungen der quantenklassischen Integration ermöglichen kann. Mark Stickells, Geschäftsführer von Pawsey, sagte, dass die Integration von Quantenbeschleunigern in die HPC-Architektur den 4.000 Forschern helfen werde, mehr darüber zu erfahren, wie die beiden Systeme zusammenarbeiten können. Dadurch entsteht ein Prüfstand, der praktische Anwendungen demonstrieren kann, damit unsere Forscher effizienter arbeiten können – was die Quantenwissenschaft voranbringt und die zukünftige Forschung beschleunigt. „Dies ist ein wichtiger Schritt in die Zukunft des Hybrid Computing.“
Mehr als 100 Millionen ausgeben: Singapur baut den ersten Quantencomputer #Am 31. Mai bei Asia Tech x Singapore Der stellvertretende Premierminister, Koordinierungsminister für Wirtschaftspolitik und Vorsitzende der Nationalen Forschungsstiftung Heng Swee Keat gab bekannt, dass das Quantum Engineering Program (QEP) offiziell gestartet wurde. Singapur wird drei nationale Plattformen vereinen, um Fähigkeiten in den Bereichen Quantencomputing, quantensichere Kommunikation und Herstellung von Quantengeräten zu entwickeln.
NQCH wird die Teams des Centre for Quantum Technology (CQT) der National University of Singapore und der Nanyang Technological University sowie hochrangige Performance-Computing-Forschung von A*STAR (IHPC) und dem Singapore National Supercomputing Centre (NSCC) zum Aufbau eines Quantencomputing-Ökosystems in Singapur. National Quantum Fabless Fabric (NQFF) National Quantum Fabless Fabric (NQFF) am A*STAR-Institut für Materialforschung und -technik (IMRE) wird die drei Säulen des Quantencomputings von QEP unterstützen: Mikro- und Nanofabrikation von Quanten Geräte in den Bereichen Kommunikation und Sensorik. Es werden auch unterstützende Geräte entwickelt, die den strategischen Bedürfnissen Singapurs im Quantentechnologie-Ökosystem entsprechen. National Quantum Security Network (NQSN) Das im Februar 2022 angekündigte NQSN wird landesweite Versuche mit quantensicherer Kommunikationstechnologie durchführen, um eine starke Cybersicherheit für kritische Infrastrukturen und Unternehmen zu gewährleisten, die mit sensiblen Daten umgehen. Die Initiative wird von CQT sowie der National University of Singapore und der Nanyang Technological University mit mehr als 15 privaten und staatlichen Partnern geleitet.
National Quantum Computing Centre (NQCH)
In diesem Zusammenhang kommentierte Professor José Ignacio Latorre, Direktor des CQT an der National University of Singapore und Hauptforscher des NQCH: „Das Quantencomputing kommt. Die Frage ist nicht, wann.“ , aber ‚Wer wird bereit sein?‘ Es ist gut, diese Technologie zu nutzen.“
Das obige ist der detaillierte Inhalt vonDer weltweit erste Raumtemperatur-Quantencomputer kommt auf den Markt! Es ist kein absoluter Nullpunkt erforderlich, der Hauptkern ist tatsächlich „mit Diamanten besetzt'.. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



Die 2024CSRankings National Computer Science Major Rankings wurden gerade veröffentlicht! In diesem Jahr gehört die Carnegie Mellon University (CMU) im Ranking der besten CS-Universitäten in den Vereinigten Staaten zu den Besten des Landes und im Bereich CS, während die University of Illinois at Urbana-Champaign (UIUC) einen der besten Plätze belegt sechs Jahre in Folge den zweiten Platz belegt. Georgia Tech belegte den dritten Platz. Dann teilten sich die Stanford University, die University of California in San Diego, die University of Michigan und die University of Washington den vierten Platz weltweit. Es ist erwähnenswert, dass das Ranking des MIT zurückgegangen ist und aus den Top 5 herausgefallen ist. CSRankings ist ein globales Hochschulrankingprojekt im Bereich Informatik, das von Professor Emery Berger von der School of Computer and Information Sciences der University of Massachusetts Amherst initiiert wurde. Die Rangfolge erfolgt objektiv

Mit dem Windows-Remotedesktopdienst können Benutzer aus der Ferne auf Computer zugreifen, was für Personen, die aus der Ferne arbeiten müssen, sehr praktisch ist. Es können jedoch Probleme auftreten, wenn Benutzer keine Verbindung zum Remotecomputer herstellen können oder Remotedesktop die Identität des Computers nicht authentifizieren kann. Dies kann durch Netzwerkverbindungsprobleme oder einen Fehler bei der Zertifikatsüberprüfung verursacht werden. In diesem Fall muss der Benutzer möglicherweise die Netzwerkverbindung überprüfen, sicherstellen, dass der Remote-Computer online ist, und versuchen, die Verbindung wiederherzustellen. Außerdem ist es wichtig, sicherzustellen, dass die Authentifizierungsoptionen des Remotecomputers richtig konfiguriert sind, um das Problem zu lösen. Solche Probleme mit den Windows-Remotedesktopdiensten können normalerweise durch sorgfältiges Überprüfen und Anpassen der Einstellungen behoben werden. Aufgrund eines Zeit- oder Datumsunterschieds kann Remote Desktop die Identität des Remotecomputers nicht überprüfen. Bitte stellen Sie Ihre Berechnungen sicher

Das „e“ von Computer ist das Symbol der wissenschaftlichen Notation. Der Buchstabe „e“ wird als Exponententrennzeichen in der wissenschaftlichen Notation verwendet, was „multipliziert mit der Zehnerpotenz“ bedeutet. In der wissenschaftlichen Notation wird eine Zahl normalerweise als M × geschrieben 10^E, wobei M eine Zahl zwischen 1 und 10 ist und E den Exponenten darstellt.

<p>MSTeams ist die vertrauenswürdige Plattform zum Kommunizieren, Chatten oder Telefonieren mit Teamkollegen und Kollegen. Der Fehlercode 80090016 auf MSTeams und die Meldung <strong>Das Trusted Platform Module Ihres Computers ist fehlgeschlagen</strong> kann zu Schwierigkeiten beim Anmelden führen. Die App erlaubt Ihnen keine Anmeldung, bis der Fehlercode behoben ist. Wenn Sie beim Öffnen von MS Teams oder einer anderen Microsoft-Anwendung auf solche Meldungen stoßen, kann Ihnen dieser Artikel bei der Lösung des Problems helfen. </p><h2&

Die Bedeutung von cu in einem Computer hängt vom Kontext ab: 1. Steuereinheit, im Zentralprozessor eines Computers, CU ist die Komponente, die für die Koordinierung und Steuerung des gesamten Rechenprozesses verantwortlich ist. 2. Recheneinheit, in einem Grafikprozessor oder einem anderen Beschleunigter Prozessor, CU ist die Grundeinheit zur Verarbeitung paralleler Rechenaufgaben.

Gelegentlich kann es bei der Verwendung eines Computers zu Fehlfunktionen des Betriebssystems kommen. Das Problem, auf das ich heute gestoßen bin, bestand darin, dass das System beim Zugriff auf gpedit.msc mitteilte, dass das Gruppenrichtlinienobjekt nicht geöffnet werden könne, weil möglicherweise die richtigen Berechtigungen fehlten. Das Gruppenrichtlinienobjekt auf diesem Computer konnte nicht geöffnet werden: 1. Beim Zugriff auf gpedit.msc meldet das System, dass das Gruppenrichtlinienobjekt auf diesem Computer aufgrund fehlender Berechtigungen nicht geöffnet werden kann. Details: Das System kann den angegebenen Pfad nicht finden. 2. Nachdem der Benutzer auf die Schaltfläche „Schließen“ geklickt hat, wird das folgende Fehlerfenster angezeigt. 3. Überprüfen Sie sofort die Protokolleinträge und kombinieren Sie die aufgezeichneten Informationen, um festzustellen, dass das Problem in der Datei C:\Windows\System32\GroupPolicy\Machine\registry.pol liegt

Nach vier Monaten wurde im internationalen Top-Journal Nature Communications eine weitere Gemeinschaftsarbeit zwischen ByteDance Research und Chen Jis Forschungsgruppe an der School of Physics der Peking-Universität veröffentlicht: der Artikel „Towards the Ground State of Moleculars Via Diffusion Monte Carlo Neural Networks“. Kombiniert neuronale Netze mit Diffusions-Monte-Carlo-Methoden und verbessert so die Anwendung neuronaler Netzmethoden in der Quantenchemie erheblich. Die Berechnungsgenauigkeit, Effizienz und Systemskala für verwandte Aufgaben sind zum neuesten SOTA geworden. Papierlink: https://www.nature.com

Wenn Sie Probleme beim Kopieren von Daten von einem Remote-Desktop auf Ihren lokalen Computer haben, kann Ihnen dieser Artikel bei der Lösung helfen. Mithilfe der Remote-Desktop-Technologie können mehrere Benutzer auf virtuelle Desktops auf einem zentralen Server zugreifen und so Datenschutz und Anwendungsverwaltung gewährleisten. Dies trägt zur Gewährleistung der Datensicherheit bei und ermöglicht es Unternehmen, ihre Anwendungen effizienter zu verwalten. Benutzer können bei der Verwendung des Remote-Desktops auf Herausforderungen stoßen. Eine davon ist die Unfähigkeit, Daten vom Remote-Desktop auf den lokalen Computer zu kopieren. Dies kann durch verschiedene Faktoren verursacht werden. Daher bietet dieser Artikel Hinweise zur Lösung dieses Problems. Warum kann ich nicht vom Remote-Desktop auf meinen lokalen Computer kopieren? Wenn Sie eine Datei auf Ihren Computer kopieren, wird sie vorübergehend an einem Ort namens Zwischenablage gespeichert. Wenn Sie diese Methode nicht zum Kopieren von Daten vom Remote-Desktop auf Ihren lokalen Computer verwenden können
