


10 Trends im Bereich maschinelles Lernen, die Sie im Jahr 2023 im Auge behalten sollten
Maschinelles Lernen erstellt Algorithmen, die es Maschinen ermöglichen, künstliche Intelligenz im Einklang mit den Interessen der Mitarbeiter und den Geschäftszielen besser zu verstehen. Laut Predictive Analytics wird maschinelles Lernen bis 2024 weit verbreitet sein.
Hier ist ein Leitfaden zu den Machine-Learning-Trends, die sich im Jahr 2022 abzeichnen:
1. Machine Learning Operational Management: Machine The Der Hauptzweck von Learning Operational Management oder MLOps besteht darin, den Entwicklungsprozess von Lösungen für maschinelles Lernen zu vereinfachen. MLOps hilft auch bei Herausforderungen, die im Geschäftsbetrieb auftreten, wie etwa der Teamkommunikation, dem Aufbau geeigneter ML-Pipelines und der Verwaltung sensibler Daten in großem Maßstab.
2. Reinforcement Learning: Maschinelle Lernsysteme lernen beim Reinforcement Learning aus den Erfahrungen ihrer Umgebung. Darin liegt großes Potenzial für künstliche Intelligenz für Videospiele und Brettspiele. Allerdings ist die Härtung von ML möglicherweise nicht die ideale Wahl, wenn die Anwendungssicherheit Priorität hat.
3.Quantum ML: Quantencomputer sind vielversprechend bei der Entwicklung leistungsfähigerer Modelle für künstliche Intelligenz und maschinelles Lernen. Die Technologie liegt noch außerhalb praktischer Anwendungen, aber die Dinge beginnen sich zu ändern, da Microsoft, Amazon und IBM Quantencomputing-Ressourcen und -Simulatoren über Cloud-Modelle leicht zugänglich machen.
4. General Adversarial Network: GAN oder General Adversarial Network ist der neue ML-Trend, der Proben generiert, die von einem selektiven Netzwerk überprüft werden müssen und jede Art von unerwünschtem Inhalt entfernt werden kann. Maschinelles Lernen ist die Welle der Zukunft, und jedes Unternehmen passt sich dieser neuen Technologie an
5. Maschinelles Lernen ohne Code: Maschinelles Lernen ist eine Methode zur Entwicklung von ML-Anwendungen ohne Vorverarbeitung und Modellierung, langwierige und zeitaufwändige Prozesse wie die Erstellung von Algorithmen, Umschulung und Bereitstellung.
6. Automatisiertes maschinelles Lernen: Automatisiertes maschinelles Lernen wird die Tools zur Kennzeichnung von Daten und zur automatischen Optimierung neuronaler Netzwerkarchitekturen verbessern. Die Nachfrage nach gekennzeichneten Daten hat in Niedriglohnländern eine Etikettierungsindustrie menschlicher Annotatoren geschaffen. Durch die Automatisierung der Auswahlarbeit wird KI kostengünstiger und neue Lösungen werden schneller auf den Markt kommen.
7. Internet der Dinge: Das IoT wird einen erheblichen Einfluss auf die Einführung von 5G haben, da es die Grundlage des IoT bilden wird. Dank der unglaublichen Netzwerkgeschwindigkeiten von 5G können Systeme Informationen viel schneller empfangen und senden. Andere Maschinen im System können über IoT-Geräte eine Verbindung zum Internet herstellen.
8. Verbessern Sie die Netzwerksicherheit: Mit der Weiterentwicklung der Technologie sind die meisten Anwendungen und Geräte intelligent geworden, was zu erheblichen technologischen Fortschritten geführt hat. Technische Experten können maschinelles Lernen nutzen, um Antivirenmodelle zu erstellen, um mögliche Cyberangriffe zu blockieren und Gefahren zu reduzieren.
9. TinyML: TinyML ist eine bessere Strategie, da es eine schnellere Verarbeitung von Algorithmen ermöglicht, da Daten nicht vom Server hin und her übertragen werden müssen. Dies ist besonders bei großen Servern wichtig, da der gesamte Vorgang weniger zeitaufwändig ist.
10. Multimodales Lernen: KI unterstützt immer besser mehrere Modalitäten innerhalb eines einzigen maschinellen Lernmodells, wie z. B. Text, Bild, Sprache und IoT-Sensordaten. Entwickler beginnen, innovative Wege zu finden, Muster zu kombinieren, um häufige Aufgaben wie das Verständnis von Dokumenten zu verbessern.
Das obige ist der detaillierte Inhalt von10 Trends im Bereich maschinelles Lernen, die Sie im Jahr 2023 im Auge behalten sollten. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



Diese Seite berichtete am 27. Juni, dass Jianying eine von FaceMeng Technology, einer Tochtergesellschaft von ByteDance, entwickelte Videobearbeitungssoftware ist, die auf der Douyin-Plattform basiert und grundsätzlich kurze Videoinhalte für Benutzer der Plattform produziert Windows, MacOS und andere Betriebssysteme. Jianying kündigte offiziell die Aktualisierung seines Mitgliedschaftssystems an und führte ein neues SVIP ein, das eine Vielzahl von KI-Schwarztechnologien umfasst, wie z. B. intelligente Übersetzung, intelligente Hervorhebung, intelligente Verpackung, digitale menschliche Synthese usw. Preislich beträgt die monatliche Gebühr für das Clipping von SVIP 79 Yuan, die Jahresgebühr 599 Yuan (Hinweis auf dieser Website: entspricht 49,9 Yuan pro Monat), das fortlaufende Monatsabonnement beträgt 59 Yuan pro Monat und das fortlaufende Jahresabonnement beträgt 499 Yuan pro Jahr (entspricht 41,6 Yuan pro Monat). Darüber hinaus erklärte der Cut-Beamte auch, dass diejenigen, die den ursprünglichen VIP abonniert haben, das Benutzererlebnis verbessern sollen

Verbessern Sie die Produktivität, Effizienz und Genauigkeit der Entwickler, indem Sie eine abrufgestützte Generierung und ein semantisches Gedächtnis in KI-Codierungsassistenten integrieren. Übersetzt aus EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, Autor JanakiramMSV. Obwohl grundlegende KI-Programmierassistenten natürlich hilfreich sind, können sie oft nicht die relevantesten und korrektesten Codevorschläge liefern, da sie auf einem allgemeinen Verständnis der Softwaresprache und den gängigsten Mustern beim Schreiben von Software basieren. Der von diesen Coding-Assistenten generierte Code eignet sich zur Lösung der von ihnen zu lösenden Probleme, entspricht jedoch häufig nicht den Coding-Standards, -Konventionen und -Stilen der einzelnen Teams. Dabei entstehen häufig Vorschläge, die geändert oder verfeinert werden müssen, damit der Code in die Anwendung übernommen wird

Um mehr über AIGC zu erfahren, besuchen Sie bitte: 51CTOAI.x Community https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou unterscheidet sich von der traditionellen Fragendatenbank, die überall im Internet zu sehen ist erfordert einen Blick über den Tellerrand hinaus. Large Language Models (LLMs) gewinnen in den Bereichen Datenwissenschaft, generative künstliche Intelligenz (GenAI) und künstliche Intelligenz zunehmend an Bedeutung. Diese komplexen Algorithmen verbessern die menschlichen Fähigkeiten, treiben Effizienz und Innovation in vielen Branchen voran und werden zum Schlüssel für Unternehmen, um wettbewerbsfähig zu bleiben. LLM hat ein breites Anwendungsspektrum und kann in Bereichen wie der Verarbeitung natürlicher Sprache, der Textgenerierung, der Spracherkennung und Empfehlungssystemen eingesetzt werden. Durch das Lernen aus großen Datenmengen ist LLM in der Lage, Text zu generieren

Large Language Models (LLMs) werden auf riesigen Textdatenbanken trainiert und erwerben dort große Mengen an realem Wissen. Dieses Wissen wird in ihre Parameter eingebettet und kann dann bei Bedarf genutzt werden. Das Wissen über diese Modelle wird am Ende der Ausbildung „verdinglicht“. Am Ende des Vortrainings hört das Modell tatsächlich auf zu lernen. Richten Sie das Modell aus oder verfeinern Sie es, um zu erfahren, wie Sie dieses Wissen nutzen und natürlicher auf Benutzerfragen reagieren können. Aber manchmal reicht Modellwissen nicht aus, und obwohl das Modell über RAG auf externe Inhalte zugreifen kann, wird es als vorteilhaft angesehen, das Modell durch Feinabstimmung an neue Domänen anzupassen. Diese Feinabstimmung erfolgt mithilfe von Eingaben menschlicher Annotatoren oder anderer LLM-Kreationen, wobei das Modell auf zusätzliches Wissen aus der realen Welt trifft und dieses integriert

Herausgeber | Der Frage-Antwort-Datensatz (QA) von ScienceAI spielt eine entscheidende Rolle bei der Förderung der Forschung zur Verarbeitung natürlicher Sprache (NLP). Hochwertige QS-Datensätze können nicht nur zur Feinabstimmung von Modellen verwendet werden, sondern auch effektiv die Fähigkeiten großer Sprachmodelle (LLMs) bewerten, insbesondere die Fähigkeit, wissenschaftliche Erkenntnisse zu verstehen und zu begründen. Obwohl es derzeit viele wissenschaftliche QS-Datensätze aus den Bereichen Medizin, Chemie, Biologie und anderen Bereichen gibt, weisen diese Datensätze immer noch einige Mängel auf. Erstens ist das Datenformular relativ einfach, die meisten davon sind Multiple-Choice-Fragen. Sie sind leicht auszuwerten, schränken jedoch den Antwortauswahlbereich des Modells ein und können die Fähigkeit des Modells zur Beantwortung wissenschaftlicher Fragen nicht vollständig testen. Im Gegensatz dazu offene Fragen und Antworten

Maschinelles Lernen ist ein wichtiger Zweig der künstlichen Intelligenz, der Computern die Möglichkeit gibt, aus Daten zu lernen und ihre Fähigkeiten zu verbessern, ohne explizit programmiert zu werden. Maschinelles Lernen hat ein breites Anwendungsspektrum in verschiedenen Bereichen, von der Bilderkennung und der Verarbeitung natürlicher Sprache bis hin zu Empfehlungssystemen und Betrugserkennung, und es verändert unsere Lebensweise. Im Bereich des maschinellen Lernens gibt es viele verschiedene Methoden und Theorien, von denen die fünf einflussreichsten Methoden als „Fünf Schulen des maschinellen Lernens“ bezeichnet werden. Die fünf Hauptschulen sind die symbolische Schule, die konnektionistische Schule, die evolutionäre Schule, die Bayes'sche Schule und die Analogieschule. 1. Der Symbolismus, auch Symbolismus genannt, betont die Verwendung von Symbolen zum logischen Denken und zum Ausdruck von Wissen. Diese Denkrichtung glaubt, dass Lernen ein Prozess der umgekehrten Schlussfolgerung durch das Vorhandene ist

Herausgeber |. KX Im Bereich der Arzneimittelforschung und -entwicklung ist die genaue und effektive Vorhersage der Bindungsaffinität von Proteinen und Liganden für das Arzneimittelscreening und die Arzneimitteloptimierung von entscheidender Bedeutung. Aktuelle Studien berücksichtigen jedoch nicht die wichtige Rolle molekularer Oberflächeninformationen bei Protein-Ligand-Wechselwirkungen. Auf dieser Grundlage schlugen Forscher der Universität Xiamen ein neuartiges Framework zur multimodalen Merkmalsextraktion (MFE) vor, das erstmals Informationen über Proteinoberfläche, 3D-Struktur und -Sequenz kombiniert und einen Kreuzaufmerksamkeitsmechanismus verwendet, um verschiedene Modalitäten zu vergleichen Ausrichtung. Experimentelle Ergebnisse zeigen, dass diese Methode bei der Vorhersage von Protein-Ligand-Bindungsaffinitäten Spitzenleistungen erbringt. Darüber hinaus belegen Ablationsstudien die Wirksamkeit und Notwendigkeit der Proteinoberflächeninformation und der multimodalen Merkmalsausrichtung innerhalb dieses Rahmens. Verwandte Forschungen beginnen mit „S

Laut Nachrichten dieser Website vom 5. Juli veröffentlichte GlobalFoundries am 1. Juli dieses Jahres eine Pressemitteilung, in der die Übernahme der Power-Galliumnitrid (GaN)-Technologie und des Portfolios an geistigem Eigentum von Tagore Technology angekündigt wurde, in der Hoffnung, seinen Marktanteil in den Bereichen Automobile und Internet auszubauen Anwendungsbereiche für Rechenzentren mit künstlicher Intelligenz, um höhere Effizienz und bessere Leistung zu erforschen. Da sich Technologien wie generative künstliche Intelligenz (GenerativeAI) in der digitalen Welt weiterentwickeln, ist Galliumnitrid (GaN) zu einer Schlüssellösung für nachhaltiges und effizientes Energiemanagement, insbesondere in Rechenzentren, geworden. Auf dieser Website wurde die offizielle Ankündigung zitiert, dass sich das Ingenieurteam von Tagore Technology im Rahmen dieser Übernahme mit GF zusammenschließen wird, um die Galliumnitrid-Technologie weiterzuentwickeln. G
