


Anwendungsfälle und Anwendungen für Datengitter in den Bereichen IoT, künstliche Intelligenz und maschinelles Lernen
Ein Grid verteilt Daten dezentral über physische und virtuelle Netzwerke. Im Gegensatz zu herkömmlichen Datenintegrationstools, die eine stark zentralisierte Infrastruktur erfordern, können Datengrids in lokalen, Multi-Cloud- und Single-Cloud-Edge-Umgebungen eingesetzt werden.
In diesem Artikel diskutieren wir die praktischen Anwendungen von Gittern in verschiedenen Umgebungen.
Data Grid: Lösung einiger häufiger Probleme
Laut MIT-Umfrageergebnissen konnten nur 13 % der befragten Organisationen ihre Datenstrategie erfolgreich umsetzen. Datengrids lösen viele der dafür verantwortlichen Ursachen.
Die Verwendung eines Datengrids kann mehrere Probleme lösen, die in kleineren Datenpipelines auftreten. Wenn diese Probleme nicht angegangen werden, können sie mit der Zeit schnell problematisch und fragil werden, da ein unzusammenhängendes Peer-to-Peer-System mit der Zeit sein eigenes Netzwerk aufbaut.
Gleichzeitig lösen Datengrids auch größere Probleme in der Organisation, wie zum Beispiel Kerngeschäftsfakten, die in verschiedenen Teilen des Unternehmens unterschiedlich sein können.
Durch die Implementierung eines Datenrasters ist es weniger wahrscheinlich, dass das System über eine Kopie der Fakten verfügt.
Die Verwendung eines Datenrasters bringt nicht nur Ordnung in das System, sondern bietet Ihnen auch eine bessere Verwaltbarkeit sowie eine ausgereifte und weiterentwickelte Datenarchitektur.
Während wir den Aufstieg cloudbasierter Anwendungen beobachten, verändert sich die Anwendungsarchitektur und geht von der traditionellen zentralisierten IT zu verteilten Servicenetzen oder Mikrodiensten über. Eine Echtzeit-Datenplattform namens K2view ist einen Schritt voraus und hat den Einsatz von Micro-DB erfolgreich in ihrer Fabric- und Grid-Architektur implementiert. Jede Mikrodatenbank speichert nur Daten für einen bestimmten Geschäftspartner (Kunden), während ihre Grid-Plattform Millionen solcher Mikrodatenbanken speichert.
Datenraster: Anwendungsfälle
Datenraster können mehrere analytische und betriebliche Anwendungsfälle über mehrere Domänen hinweg unterstützen. Einige Beispiele sind: -
1, Kundenlebenszyklus
Es bietet 360-Grad-Unterstützung für die Kundenbetreuung und verkürzt die durchschnittliche Kundenbearbeitungszeit erheblich. Es verbessert auch die Kundenzufriedenheit und verbessert die Lösungsraten beim ersten Kontakt.
Marketingabteilungen können auch eine einzige Sicht auf den Kunden bereitstellen, um Entscheidungen über das nächstbeste Angebot oder eine prädiktive Abwanderungsmodellierung zu treffen.
2. Versorgungsunternehmen im Internet der Dinge (IoT)
Durch IoT-Geräteüberwachung können Produktteams Einblicke in Nutzungsmuster von Edge-Geräten gewinnen. Sie können diese Musterinformationen nutzen, um ihre Rentabilität und Produktakzeptanz zu iterieren und zu verbessern.
Durch die Einführung von Mesh-Netzwerken für IoT-Geräte können Unternehmen von mehreren Vorteilen profitieren, die sie zu einer beliebten Technologie bei der Auswahl eines Netzwerks machen.
Unternehmen können alle ihre IoT-, Unternehmens-, Streaming- und Drittanbieterdaten zu sehr geringen Kosten zusammen in einem S3-Datensee speichern.
3. Heilungsalgorithmus
Wie bereits erwähnt, sendet der Selbstheilungsalgorithmus automatisch Daten, auch wenn einige Knoten die Verbindung zum besten Weg verlieren.
Dieser Algorithmus ermöglicht es dem System, nur verfügbare und funktionierende Verbindungen zu verwenden. Selbst wenn einige Geräte nicht mehr funktionieren, ist das Netzwerk daher immer noch in der Lage, die Informationen zu senden und zu empfangen, die zur Aufrechterhaltung oder Erledigung einer bestimmten Aufgabe erforderlich sind.
4. Verteilte und effektivere Sicherheit
Wenn es um Sicherheit geht, sind Unternehmen jetzt gut vorbereitet und aktualisieren ihre Protokolle ständig. Den KMU mangelt es jedoch an der nötigen Beratung. Laut der Cyberkriminalitätsforschung von Accenture zielen 43 % der Angriffe auf kleinere Unternehmen ab und nur 14 % der Angriffe sind selbstverhinderbar.
Mit modernen Datenmanagementlösungen wie Mesh haben KMUs die Möglichkeit, mitzuhalten.
Sicherheit ist von entscheidender Bedeutung, wenn Daten stark fragmentiert und verteilt sind.
Solche Systeme sollten Autorisierungs- und Authentifizierungsaktivitäten an verschiedene Benutzer delegieren und ihnen bei Bedarf unterschiedliche Zugriffsebenen gewähren.
Die folgenden kritischen Sicherheitsfunktionen für Datengrids wurden im Market Premier Report 2022 identifiziert:
- Verschiedene Formen des Datenschutzmanagements #🎜 🎜 #Datenverschlüsselung, im Ruhezustand oder in Bewegung
- Datenmaskierung zur effektiven Verwaltung der PII-Verschleierung
- CCPA- und DSGVO-Konformität und andere Vorschriften
- Abdeckung des Identitätsmanagements alle IAM/LDAP-Dienste
7, Künstliche Intelligenz und maschinelles Lernen
Geheimdienst- und Entwicklungsteams können problemlos Datenkataloge und virtuelle Lager aus mehreren Quellen erstellen, um KI- und maschinelle Lernmodelle bereitzustellen.
Dadurch erhalten sie mehr Einblicke, ohne alle Daten an einem bestimmten zentralen Ort sammeln zu müssen.
Teams können auch die föderierte Datenvorbereitung nutzen, sodass Domänen vertrauenswürdige Daten und Qualität für Datenanalyse-Workloads bereitstellen können.
8、Loss Prevention
Durch die Implementierung eines Datenrasters im Finanzsektor können Unternehmen schneller Erkenntnisse gewinnen und gleichzeitig betriebliche Risiken und Kosten reduzieren.
Mit dieser Funktion können internationale Finanzinstitute und Organisationen ihre Daten lokal analysieren. Dies kann in jeder Region und jedem Land durchgeführt werden und hilft dabei, etwaige Betrugsgefahren zu erkennen, ohne dass Kopien des Datensatzes erstellt werden müssen, die an eine zentrale Datenbank übertragen werden können.
Data Privacy Management ermöglicht es Unternehmen, ihre Kundendaten zu schützen, da sie sich entwickelnde regionale Daten- und Datenschutzgesetze wie das VCDPA einhalten müssen.
Mehrere praktische Implementierungen von Data Grid
Finanzdienstleistungsorganisation
In einem ihrer Blogs diskutierte Thoughtworks die Auswirkungen von Data Grid auf die Finanzen Datenprozesse von Institutionen.
Da solche Anwendungen große Mengen an Transaktionsdaten in Echtzeit verarbeiten, ist es wichtig, dass die Daten genau und zeitnah an das Analysesystem gestreamt werden.
In diesem Fall haben Führungskräfte die Flexibilität, Daten schnell zu manipulieren und Zugriff auf domänenorientierte Datenprodukte zu haben.
Dadurch können sie relevantere Fragen stellen und letztendlich zuverlässigere Antworten und wertvolle Erkenntnisse erhalten, um in kürzerer Zeit Maßnahmen zu ergreifen.
Darüber hinaus sind Domänenteams auch in der Lage, Analysedaten zu nutzen und diese direkt in das digitale Erlebnis des Benutzers zu integrieren.
AWS S3
Vor etwa 15 Jahren kam es zu einer großen Veränderung, als AWS seine Speicherschicht standardisiert und durch AWS S3-Objektspeicher ersetzte.
Aufgrund der Erschwinglichkeit und Allgegenwart von S3 und anderen Cloud-Speichern verlagern Unternehmen ihre Daten jetzt in Cloud-Objektspeicher. Dadurch können sie Datenseen aufbauen, die Daten letztendlich auf unterschiedliche Weise analysieren können. Zalando, Europas größter Online-Modehändler, erfuhr, dass es eine einfache Möglichkeit gibt, Zugang und Verfügbarkeit in großem Maßstab zu gewährleisten. Dies kann erreicht werden, indem mehr Verantwortung auf das Team übertragen wird, das diese Daten ursprünglich gesammelt hat und über die erforderlichen Domänenkenntnisse verfügt. Und auch dadurch, dass alle Metadateninformationen und die Datenverwaltung an einem zentralen Ort gespeichert werden.
Vertrauen Sie mir, es gibt nicht genug Platz, um alle Anwendungsfälle abzudecken. Dies ist ein Push-Markt und Unternehmen wollen das Beste daraus machen.
Was kommt als nächstes? Datenproduktdenken einführen
Es gibt mehrere innovative Praktiken für Datenprodukte, die unterschiedliche Konzepte wie Design Thinking, „Jobs to be done“-Theorie und Breakdown vereinen Organisationssilos, die funktionsübergreifende Innovationen behindern. Bis 2022 sollten Unternehmen die Chance nutzen und ihre Datenverwaltungsstrategien im Hinblick auf Web 3.0 weiterentwickeln.
Das obige ist der detaillierte Inhalt vonAnwendungsfälle und Anwendungen für Datengitter in den Bereichen IoT, künstliche Intelligenz und maschinelles Lernen. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



Die Integration von künstlicher Intelligenz (KI) und maschinellem Lernen (ML) in Systeme des Internets der Dinge (IoT) markiert einen wichtigen Fortschritt in der Entwicklung intelligenter Technologie. Diese Konvergenz wird AIoT (künstliche Intelligenz für das Internet der Dinge) genannt und verbessert nicht nur die Fähigkeiten des Systems, sondern verändert auch die Art und Weise, wie IoT-Systeme in der Umgebung funktionieren, lernen und sich anpassen. Lassen Sie uns diese Integration und ihre Bedeutung untersuchen. Rolle von künstlicher Intelligenz und maschinellem Lernen im IoT. Verbesserte Datenverarbeitung und -analyse. Erweiterte Dateninterpretation: IoT-Geräte erzeugen riesige Datenmengen. Künstliche Intelligenz und maschinelles Lernen können diese Daten geschickt sammeln, wertvolle Erkenntnisse gewinnen und Muster identifizieren, die für die menschliche Perspektive oder herkömmliche Datenverarbeitungsmethoden unsichtbar sind. Predictive Analytics nutzt künstliche Intelligenz und maschinelles Lernen, um zukünftige Trends auf der Grundlage historischer Daten vorherzusagen

Robotic IoT ist eine aufstrebende Entwicklung, die verspricht, zwei wertvolle Technologien zusammenzuführen: Industrieroboter und IoT-Sensoren. Wird das Internet der Roboter-Dinge zum Mainstream in der Fertigung werden? Das Internet der Roboter-Dinge (IoRT) ist eine Form von Netzwerk, das Roboter mit dem Internet verbindet. Diese Roboter nutzen IoT-Sensoren, um Daten zu sammeln und ihre Umgebung zu interpretieren. Sie werden häufig mit verschiedenen Technologien wie künstlicher Intelligenz und Cloud Computing kombiniert, um die Datenverarbeitung zu beschleunigen und die Ressourcennutzung zu optimieren. Die Entwicklung von IoRT ermöglicht es Robotern, Umweltveränderungen intelligenter zu erkennen und darauf zu reagieren, was zu effizienteren Lösungen für verschiedene Branchen führt. Durch die Integration mit der IoT-Technologie kann IoRT nicht nur autonomen Betrieb und Selbstlernen realisieren, sondern auch

Mit der Entwicklung der IoT-Technologie können immer mehr Geräte eine Verbindung zum Internet herstellen und über das Internet kommunizieren und interagieren. Bei der Entwicklung von IoT-Anwendungen wird häufig das Message Queuing Telemetry Transport Protocol (MQTT) als leichtes Kommunikationsprotokoll verwendet. In diesem Artikel wird erläutert, wie Sie praktische Erfahrungen in der Java-Entwicklung nutzen können, um IoT-Funktionen über MQTT zu implementieren. 1. Was ist MQT? QTT ist ein Nachrichtenübertragungsprotokoll, das auf dem Publish/Subscribe-Modell basiert. Es verfügt über ein einfaches Design und einen geringen Overhead und eignet sich für Anwendungsszenarien, in denen kleine Datenmengen schnell übertragen werden.

Als innovationsgetriebenes Technologieunternehmen ist Christie in der Lage, umfassende Lösungen, umfassende Branchenerfahrung und ein umfassendes Servicenetzwerk für intelligente audiovisuelle Technologie bereitzustellen. Auf der diesjährigen InfoCommChina brachte Christie reine RGB-Laserprojektoren, 1DLP-Laserprojektoren, LED-Videowände sowie Content-Management- und Verarbeitungslösungen mit. Am Veranstaltungsort wurde eine großformatige, speziell für astronomische Vorführungen entworfene äußere Kugelkuppel zum Mittelpunkt der Szene, die Christie „Sphere Deep Space“ nannte, und der reine Laserprojektor Christie M4K25RGB verlieh ihr „grüne Vitalität“. Herr Sheng Xiaoqiang, leitender technischer Servicemanager der kommerziellen Geschäftsabteilung in China, sagte: Es ist nicht schwierig, eine äußere sphärische Kuppelprojektion zu realisieren, aber sie kann kleiner und farblich gestaltet werden

Weltweit scheint insbesondere das verarbeitende Gewerbe die Schwierigkeiten während der Pandemie und die Unterbrechungen der Lieferketten vor einigen Jahren allmählich überwunden zu haben. Es wird jedoch erwartet, dass die Hersteller bis 2024 vor neuen Herausforderungen stehen, von denen viele durch den breiteren Einsatz digitaler Technologien gelöst werden können. Aktuelle Branchenforschungen haben sich auf die Herausforderungen konzentriert, mit denen Hersteller in diesem Jahr konfrontiert sind, und darauf, wie sie darauf reagieren wollen. Eine Studie des State of Manufacturing Report ergab, dass die verarbeitende Industrie im Jahr 2023 mit wirtschaftlicher Unsicherheit und Herausforderungen bei der Arbeitswelt konfrontiert ist und dass ein dringender Bedarf besteht, neue Technologien einzuführen, um diese Probleme zu lösen. Deloitte machte in seinem Manufacturing Outlook 2024 einen ähnlichen Punkt und stellte fest, dass produzierende Unternehmen mit wirtschaftlicher Unsicherheit, Unterbrechungen der Lieferkette und Herausforderungen bei der Rekrutierung qualifizierter Arbeitskräfte konfrontiert sein werden. egal in welcher Situation

Mit der kontinuierlichen Weiterentwicklung intelligenter Technologie sind intelligente Gebäude zu einer starken Kraft in der heutigen Baubranche geworden. Beim Aufstieg intelligenter Gebäude haben Sensoren für das Internet der Dinge (IoT) und künstliche Intelligenz (KI) eine entscheidende Rolle gespielt. Ihre Kombination ist nicht nur eine einfache technische Anwendung, sondern auch eine völlige Subversion traditioneller Gebäudekonzepte und bringt uns eine intelligentere, effizientere und komfortablere Gebäudeumgebung. In den letzten Jahren und insbesondere im Zuge der COVID-19-Pandemie sind die Herausforderungen für das Gebäudemanagement gestiegen und haben sich weiterentwickelt, da sich die Erwartungen an Facility Manager geändert haben und die Anforderungen an die Rentabilität gestiegen sind. Der Wandel hin zu stärker integrierten und flexibleren Arbeitsumgebungen in Büros verändert auch die Art und Weise, wie Gewerbegebäude genutzt werden, und erfordert Echtzeit-Einblick in die Gebäudenutzung und Nutzertrends

Praktische Erfahrungen mit der C++-Internet-of-Things-Programmierung Das Internet der Dinge (IoT) ist ein heißes Thema, das in den letzten Jahren viel Aufmerksamkeit erregt hat. Es verbindet verschiedene Geräte und Sensoren miteinander, um Informationsaustausch und intelligente Steuerung zu erreichen. Bei der Entwicklung des Internets der Dinge zeichnet sich C++ als leistungsstarke Programmiersprache durch hohe Leistung und Effizienz aus und wird daher häufig im Bereich des Internets der Dinge eingesetzt. In diesem Artikel werde ich einige praktische Erfahrungen aus der C++-IoT-Programmierung weitergeben, in der Hoffnung, Entwicklern eine nützliche Referenz zu bieten.

Best Practices für die Entwicklung und Implementierung eines IoT-Geräteverwaltungssystems mithilfe der Go-Sprache Zusammenfassung: Mit der rasanten Entwicklung der IoT-Technologie ist die Verwaltung von IoT-Geräten immer wichtiger geworden. In diesem Artikel werden die Best Practices für die Entwicklung von IoT-Geräteverwaltungssystemen mithilfe der Go-Sprache vorgestellt. Zuerst stellten wir die Eigenschaften der Go-Sprache vor und erklärten, warum wir die Go-Sprache für die Entwicklung eines IoT-Geräteverwaltungssystems ausgewählt haben. Anschließend besprechen wir den Architekturentwurf des IoT-Geräteverwaltungssystems und geben einige Empfehlungen und Tipps zur Optimierung der Systemleistung und Skalierbarkeit. Abschließend teilen wir einige praktische Entwicklungen mit
