Inhaltsverzeichnis
Neueste Fortschritte in der Computer Vision
Chancen in der Computer Vision
Herausforderungen im Bereich Computer Vision
Was ist die Zukunft von Computer Vision?
Heim Technologie-Peripheriegeräte KI Der aktuelle Stand der Computer Vision im Jahr 2023: Chancen und Herausforderungen liegen nebeneinander

Der aktuelle Stand der Computer Vision im Jahr 2023: Chancen und Herausforderungen liegen nebeneinander

Apr 11, 2023 pm 04:55 PM
机器学习 深度学习

Der Bereich Computer Vision hat seit den ersten Experimenten zur Bilderkennung in den 1960er Jahren einen langen Weg zurückgelegt.

Der aktuelle Stand der Computer Vision im Jahr 2023: Chancen und Herausforderungen liegen nebeneinander

Computer-Vision-Technologie wird in einer Vielzahl von Anwendungen eingesetzt, von selbstfahrenden Autos über das Gesundheitswesen bis hin zu Sicherheitssystemen. Im Jahr 2023 gewinnt Computer Vision mit den neuesten Fortschritten in den Bereichen Deep Learning, neuronale Netze und Bildverarbeitung an Dynamik. Es gibt jedoch erhebliche Herausforderungen, darunter ethische Überlegungen und die Notwendigkeit vielfältigerer und repräsentativerer Datensätze. In diesem Artikel untersuchen wir den aktuellen Stand der Computer Vision im Jahr 2023, die bevorstehenden Chancen und die Herausforderungen, die bewältigt werden müssen, um ihr volles Potenzial auszuschöpfen.

Neueste Fortschritte in der Computer Vision

In den letzten Jahren hat sich Deep Learning zu einem leistungsstarken Werkzeug für Computer Vision entwickelt. Deep-Learning-Algorithmen, die künstliche neuronale Netze verwenden, um die Art und Weise nachzuahmen, wie das menschliche Gehirn Informationen verarbeitet, wurden eingesetzt, um Durchbrüche bei der Bilderkennung und -klassifizierung zu erzielen. Im Jahr 2012 erreichte beispielsweise ein Deep-Learning-Algorithmus namens AlexNet bei der groß angelegten visuellen Erkennungsherausforderung ImageNet eine Rekordfehlerrate von 15,3 % und übertraf damit das bisher beste Ergebnis deutlich.

Seitdem hat sich Deep Learning kontinuierlich verbessert, wobei neue Algorithmen und Architekturen die Grenzen des Möglichen verschieben. Beispielsweise führten Forscher bei Google im Jahr 2020 eine neue Deep-Learning-Architektur namens EfficientNet ein, die bei einer Reihe von Bildklassifizierungsaufgaben modernste Ergebnisse erzielte und dabei weniger Parameter als frühere Modelle verwendete. Seitdem wurde EfficientNet von einer Vielzahl von Unternehmen und Forschern übernommen und unterstreicht die Leistungsfähigkeit von Deep Learning in der Computer Vision.

Ein weiterer Bereich der jüngsten Fortschritte in der Computer Vision ist die Bildverarbeitung. Fortschritte bei Bildverarbeitungsalgorithmen haben es ermöglicht, mehr Informationen aus Bildern zu extrahieren, beispielsweise das Erkennen und Verfolgen von Objekten in Live-Videostreams. Beispielsweise entwickelten Forscher der Stanford University im Jahr 2018 einen Echtzeit-Objekterkennungsalgorithmus namens YOLO, der bei einer Reihe von Benchmarks Spitzenleistungen erzielte. Seitdem wird YOLO häufig in Bereichen wie autonomen Fahrzeugen und Sicherheitssystemen eingesetzt.

Chancen in der Computer Vision

Die jüngsten Fortschritte in der Computer Vision haben eine Reihe neuer Möglichkeiten in verschiedenen Branchen eröffnet. Hier einige Beispiele:

  • Gesundheitswesen: Computer Vision kann in einer Vielzahl von Anwendungen im Gesundheitswesen eingesetzt werden, z. B. zur Diagnose von Krankheiten anhand medizinischer Bilder, zur Fernüberwachung von Patienten und zur Verbesserung chirurgischer Ergebnisse. Beispielsweise entwickelten Forscher der Stanford University im Jahr 2018 einen Deep-Learning-Algorithmus, der Hautkrebs genauso genau diagnostizieren konnte wie ein menschlicher Dermatologe.
  • Einzelhandel: Computer Vision kann im Einzelhandel eingesetzt werden, um das Einkaufserlebnis zu verbessern, beispielsweise durch die automatische Erkennung und Identifizierung von Produkten oder durch die Verfolgung des Kundenverhaltens, um personalisierte Empfehlungen abzugeben. Beispielsweise nutzen Amazon Go-Shops Computer Vision, um Kunden zu verfolgen, während sie sich im Geschäft bewegen, und ihnen automatisch die von ihnen gekauften Produkte in Rechnung zu stellen.
  • Sicherheit: Computer Vision kann in Sicherheitssystemen eingesetzt werden, um Eindringlinge zu erkennen und zu verfolgen oder Personen anhand von Gesichtsmerkmalen zu identifizieren. Beispielsweise hat die chinesische Regierung ein landesweites Überwachungssystem namens Skynet entwickelt, das Gesichtserkennungstechnologie nutzt, um Einzelpersonen zu verfolgen und ihr Verhalten zu überwachen.

Herausforderungen im Bereich Computer Vision

Während die Möglichkeiten im Bereich Computer Vision enorm sind, steht der Bereich auch vor großen Herausforderungen. Hier einige Beispiele:

  • Ethik: Computer Vision kann für gute und schlechte Zwecke eingesetzt werden, beispielsweise in Überwachungssystemen, die in die Privatsphäre eindringen, oder in Gesichtserkennungssystemen, die Voreingenommenheit aufrechterhalten. Forscher und Entwickler müssen die ethischen Implikationen ihrer Arbeit berücksichtigen und sicherstellen, dass ihre Systeme so gestaltet sind, dass sie die Rechte des Einzelnen respektieren und soziale Gerechtigkeit fördern.
  • Datenverzerrung: Computer-Vision-Algorithmen sind nur so gut wie die Daten, auf denen sie trainiert werden. Wenn die Daten verzerrt oder nicht repräsentativ sind, lernt der Algorithmus diese Verzerrungen und überträgt sie in seine Vorhersagen. Dies kann zu unfairen und diskriminierenden Ergebnissen führen, insbesondere bei Anwendungen wie der Gesichtserkennung, bei denen Voreingenommenheit marginalisierte Gemeinschaften unverhältnismäßig stark beeinträchtigen kann. Um diese Herausforderung zu meistern, müssen Forscher und Entwickler sicherstellen, dass die Datensätze vielfältig, repräsentativ und frei von Verzerrungen sind.
  • Gegnerische Angriffe: Computer-Vision-Algorithmen sind auch anfällig für gegnerische Angriffe, bei denen ein Angreifer absichtlich Bilder oder Videos manipuliert, um den Algorithmus auszutricksen. Gegnerische Angriffe können genutzt werden, um Sicherheitssysteme auszutricksen, Objekte falsch zu klassifizieren oder sogar selbstfahrende Autos zum Absturz zu bringen. Um dieser Herausforderung zu begegnen, entwickeln Forscher neue Algorithmen und Techniken, die gegnerische Angriffe erkennen und abwehren können.
  • Hardwareeinschränkungen: Computer-Vision-Algorithmen sind rechenintensiv und erfordern viel Rechenleistung und Speicher. Dies schränkt seine Skalierbarkeit und Nützlichkeit in realen Anwendungen ein. Um diese Herausforderung zu meistern, entwickeln Forscher effizientere Algorithmen und Hardwarearchitekturen, beispielsweise spezielle Chips für Deep Learning.

Was ist die Zukunft von Computer Vision?

Der Markt für Computer Vision ist in den letzten Jahren in mehreren Branchen gewachsen und wird laut Allied Market Research voraussichtlich bis 2023 einen Umsatz von 17,4 Milliarden US-Dollar und bis 2030 einen Umsatzanstieg von 41,11 US-Dollar verzeichnen Milliarde.

Angesichts der neuesten Fortschritte in den Bereichen Deep Learning, neuronale Netze und Bildverarbeitungstechnologie sind die zukünftigen Entwicklungsaussichten für Computer Vision sehr gut. Computer Vision wird in einer Vielzahl von Anwendungen eingesetzt, vom Gesundheitswesen über den Einzelhandel bis hin zu Sicherheitssystemen, und ist vielversprechend für die Zukunft. Allerdings steht der Bereich auch vor erheblichen Herausforderungen, darunter ethische Überlegungen, Datenverzerrungen, gegnerische Angriffe und Hardware-Einschränkungen. Um das volle Potenzial von Computer Vision auszuschöpfen, müssen sich Forscher und Entwickler weiterhin diesen Herausforderungen stellen und sicherstellen, dass ihre Systeme so gestaltet sind, dass sie Fairness, Transparenz und soziale Gerechtigkeit fördern.

Das obige ist der detaillierte Inhalt vonDer aktuelle Stand der Computer Vision im Jahr 2023: Chancen und Herausforderungen liegen nebeneinander. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

R.E.P.O. Energiekristalle erklärten und was sie tun (gelber Kristall)
2 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
Repo: Wie man Teamkollegen wiederbelebt
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Abenteuer: Wie man riesige Samen bekommt
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

In diesem Artikel erfahren Sie mehr über SHAP: Modellerklärung für maschinelles Lernen In diesem Artikel erfahren Sie mehr über SHAP: Modellerklärung für maschinelles Lernen Jun 01, 2024 am 10:58 AM

In den Bereichen maschinelles Lernen und Datenwissenschaft stand die Interpretierbarkeit von Modellen schon immer im Fokus von Forschern und Praktikern. Mit der weit verbreiteten Anwendung komplexer Modelle wie Deep Learning und Ensemble-Methoden ist das Verständnis des Entscheidungsprozesses des Modells besonders wichtig geworden. Explainable AI|XAI trägt dazu bei, Vertrauen in maschinelle Lernmodelle aufzubauen, indem es die Transparenz des Modells erhöht. Eine Verbesserung der Modelltransparenz kann durch Methoden wie den weit verbreiteten Einsatz mehrerer komplexer Modelle sowie der Entscheidungsprozesse zur Erläuterung der Modelle erreicht werden. Zu diesen Methoden gehören die Analyse der Merkmalsbedeutung, die Schätzung des Modellvorhersageintervalls, lokale Interpretierbarkeitsalgorithmen usw. Die Merkmalswichtigkeitsanalyse kann den Entscheidungsprozess des Modells erklären, indem sie den Grad des Einflusses des Modells auf die Eingabemerkmale bewertet. Schätzung des Modellvorhersageintervalls

Jenseits von ORB-SLAM3! SL-SLAM: Szenen mit wenig Licht, starkem Jitter und schwacher Textur werden verarbeitet Jenseits von ORB-SLAM3! SL-SLAM: Szenen mit wenig Licht, starkem Jitter und schwacher Textur werden verarbeitet May 30, 2024 am 09:35 AM

Heute diskutieren wir darüber, wie Deep-Learning-Technologie die Leistung von visionbasiertem SLAM (Simultaneous Localization and Mapping) in komplexen Umgebungen verbessern kann. Durch die Kombination von Methoden zur Tiefenmerkmalsextraktion und Tiefenanpassung stellen wir hier ein vielseitiges hybrides visuelles SLAM-System vor, das die Anpassung in anspruchsvollen Szenarien wie schlechten Lichtverhältnissen, dynamischer Beleuchtung, schwach strukturierten Bereichen und starkem Jitter verbessern soll. Unser System unterstützt mehrere Modi, einschließlich erweiterter Monokular-, Stereo-, Monokular-Trägheits- und Stereo-Trägheitskonfigurationen. Darüber hinaus wird analysiert, wie visuelles SLAM mit Deep-Learning-Methoden kombiniert werden kann, um andere Forschungen zu inspirieren. Durch umfangreiche Experimente mit öffentlichen Datensätzen und selbst abgetasteten Daten demonstrieren wir die Überlegenheit von SL-SLAM in Bezug auf Positionierungsgenauigkeit und Tracking-Robustheit.

Identifizieren Sie Über- und Unteranpassung anhand von Lernkurven Identifizieren Sie Über- und Unteranpassung anhand von Lernkurven Apr 29, 2024 pm 06:50 PM

In diesem Artikel wird vorgestellt, wie Überanpassung und Unteranpassung in Modellen für maschinelles Lernen mithilfe von Lernkurven effektiv identifiziert werden können. Unteranpassung und Überanpassung 1. Überanpassung Wenn ein Modell mit den Daten übertrainiert ist, sodass es daraus Rauschen lernt, spricht man von einer Überanpassung des Modells. Ein überangepasstes Modell lernt jedes Beispiel so perfekt, dass es ein unsichtbares/neues Beispiel falsch klassifiziert. Für ein überangepasstes Modell erhalten wir einen perfekten/nahezu perfekten Trainingssatzwert und einen schrecklichen Validierungssatz-/Testwert. Leicht geändert: „Ursache der Überanpassung: Verwenden Sie ein komplexes Modell, um ein einfaches Problem zu lösen und Rauschen aus den Daten zu extrahieren. Weil ein kleiner Datensatz als Trainingssatz möglicherweise nicht die korrekte Darstellung aller Daten darstellt. 2. Unteranpassung Heru.“

Die Entwicklung der künstlichen Intelligenz in der Weltraumforschung und der Siedlungstechnik Die Entwicklung der künstlichen Intelligenz in der Weltraumforschung und der Siedlungstechnik Apr 29, 2024 pm 03:25 PM

In den 1950er Jahren wurde die künstliche Intelligenz (KI) geboren. Damals entdeckten Forscher, dass Maschinen menschenähnliche Aufgaben wie das Denken ausführen können. Später, in den 1960er Jahren, finanzierte das US-Verteidigungsministerium künstliche Intelligenz und richtete Labore für die weitere Entwicklung ein. Forscher finden Anwendungen für künstliche Intelligenz in vielen Bereichen, etwa bei der Erforschung des Weltraums und beim Überleben in extremen Umgebungen. Unter Weltraumforschung versteht man die Erforschung des Universums, das das gesamte Universum außerhalb der Erde umfasst. Der Weltraum wird als extreme Umgebung eingestuft, da sich seine Bedingungen von denen auf der Erde unterscheiden. Um im Weltraum zu überleben, müssen viele Faktoren berücksichtigt und Vorkehrungen getroffen werden. Wissenschaftler und Forscher glauben, dass die Erforschung des Weltraums und das Verständnis des aktuellen Zustands aller Dinge dazu beitragen können, die Funktionsweise des Universums zu verstehen und sich auf mögliche Umweltkrisen vorzubereiten

Implementierung von Algorithmen für maschinelles Lernen in C++: Häufige Herausforderungen und Lösungen Implementierung von Algorithmen für maschinelles Lernen in C++: Häufige Herausforderungen und Lösungen Jun 03, 2024 pm 01:25 PM

Zu den häufigsten Herausforderungen, mit denen Algorithmen für maschinelles Lernen in C++ konfrontiert sind, gehören Speicherverwaltung, Multithreading, Leistungsoptimierung und Wartbarkeit. Zu den Lösungen gehören die Verwendung intelligenter Zeiger, moderner Threading-Bibliotheken, SIMD-Anweisungen und Bibliotheken von Drittanbietern sowie die Einhaltung von Codierungsstilrichtlinien und die Verwendung von Automatisierungstools. Praktische Fälle zeigen, wie man die Eigen-Bibliothek nutzt, um lineare Regressionsalgorithmen zu implementieren, den Speicher effektiv zu verwalten und leistungsstarke Matrixoperationen zu nutzen.

Erklärbare KI: Erklären komplexer KI/ML-Modelle Erklärbare KI: Erklären komplexer KI/ML-Modelle Jun 03, 2024 pm 10:08 PM

Übersetzer |. Rezensiert von Li Rui |. Chonglou Modelle für künstliche Intelligenz (KI) und maschinelles Lernen (ML) werden heutzutage immer komplexer, und die von diesen Modellen erzeugten Ergebnisse sind eine Blackbox, die den Stakeholdern nicht erklärt werden kann. Explainable AI (XAI) zielt darauf ab, dieses Problem zu lösen, indem es Stakeholdern ermöglicht, die Funktionsweise dieser Modelle zu verstehen, sicherzustellen, dass sie verstehen, wie diese Modelle tatsächlich Entscheidungen treffen, und Transparenz in KI-Systemen, Vertrauen und Verantwortlichkeit zur Lösung dieses Problems gewährleistet. In diesem Artikel werden verschiedene Techniken der erklärbaren künstlichen Intelligenz (XAI) untersucht, um ihre zugrunde liegenden Prinzipien zu veranschaulichen. Mehrere Gründe, warum erklärbare KI von entscheidender Bedeutung ist. Vertrauen und Transparenz: Damit KI-Systeme allgemein akzeptiert und vertrauenswürdig sind, müssen Benutzer verstehen, wie Entscheidungen getroffen werden

Ausblick auf zukünftige Trends der Golang-Technologie im maschinellen Lernen Ausblick auf zukünftige Trends der Golang-Technologie im maschinellen Lernen May 08, 2024 am 10:15 AM

Das Anwendungspotenzial der Go-Sprache im Bereich des maschinellen Lernens ist enorm. Ihre Vorteile sind: Parallelität: Sie unterstützt die parallele Programmierung und eignet sich für rechenintensive Operationen bei maschinellen Lernaufgaben. Effizienz: Der Garbage Collector und die Sprachfunktionen sorgen dafür, dass der Code auch bei der Verarbeitung großer Datenmengen effizient ist. Benutzerfreundlichkeit: Die Syntax ist prägnant und erleichtert das Erlernen und Schreiben von Anwendungen für maschinelles Lernen.

Ist Flash Attention stabil? Meta und Harvard stellten fest, dass die Gewichtsabweichungen ihrer Modelle um Größenordnungen schwankten Ist Flash Attention stabil? Meta und Harvard stellten fest, dass die Gewichtsabweichungen ihrer Modelle um Größenordnungen schwankten May 30, 2024 pm 01:24 PM

MetaFAIR hat sich mit Harvard zusammengetan, um einen neuen Forschungsrahmen zur Optimierung der Datenverzerrung bereitzustellen, die bei der Durchführung groß angelegten maschinellen Lernens entsteht. Es ist bekannt, dass das Training großer Sprachmodelle oft Monate dauert und Hunderte oder sogar Tausende von GPUs verwendet. Am Beispiel des Modells LLaMA270B erfordert das Training insgesamt 1.720.320 GPU-Stunden. Das Training großer Modelle stellt aufgrund des Umfangs und der Komplexität dieser Arbeitsbelastungen einzigartige systemische Herausforderungen dar. In letzter Zeit haben viele Institutionen über Instabilität im Trainingsprozess beim Training generativer SOTA-KI-Modelle berichtet. Diese treten normalerweise in Form von Verlustspitzen auf. Beim PaLM-Modell von Google kam es beispielsweise während des Trainingsprozesses zu Instabilitäten. Numerische Voreingenommenheit ist die Hauptursache für diese Trainingsungenauigkeit.

See all articles