Was ist das Potenzial für den KI-Betrieb in Unternehmen?
Mit der kontinuierlichen Integration von Wi-Fi6, 5G-Technologie und IoT-Technologie wird erwartet, dass in den nächsten Jahren Milliarden zusätzlicher Geräte ins Netzwerk gebracht werden. Dies wird erhebliche Auswirkungen auf den Arbeitsplatz der Zukunft haben und über die klaren Trends von Remote-Arbeitern und hybriden Arbeitskräften hinausgehen.
Da Arbeitsplätze immer komplexer werden und abgelegene Arbeitsplätze zur Norm werden, nähert sich die Welt einer Zeit, in der viele Menschen von jedem Ort aus virtuell mit Kollegen kommunizieren können. Darüber hinaus werden Virtual-Reality- und IoT-Sensoren in der Lage sein, Fachwissen aus der Ferne überall auf der Welt bereitzustellen.
Schwierigkeiten der AIops-Implementierung
Künstliche Intelligenz und Operationen mit künstlicher Intelligenz sind Aufgaben, die mit denen vergleichbar sind, die von menschlichen Experten ausgeführt werden nächster und letzter Schritt im Automatisierungsprozess. Daher sind die Vorteile von KI allgemein bekannt und werden von Führungskräften zunehmend nachgefragt. Viele Unternehmen bremsen Fortschritte bei der erfolgreichen Implementierung von KI. In der Regel scheitern sie an mindestens einer der drei größten Hürden: dem Aufbau des Technologie-Stacks, der Vorbereitung der Mitarbeiter und der Etablierung der KI-Governance.
Viele Unternehmen haben künstliche Intelligenz nur langsam erfolgreich implementiert. In der Regel versagen sie in mindestens einem der drei Hauptbereiche: Aufbau des Technologie-Stacks, Vorbereitung der Mitarbeiter und Einrichtung der KI-Governance.
Technologie-Stack für künstliche Intelligenz
Die Qualität der künstlichen Intelligenz hängt von den Daten ab, die sie lernen muss. Das Generieren, Bereinigen und Verwalten von Datensätzen sowie das Feature-Engineering sind immer noch die Mainstream-Anwendungen der künstlichen Intelligenz. Ob aus Gründen wie fehlenden Datenqualitätsexperten oder unzureichenden Rechenressourcen – die Vorbereitung Ihrer Daten für maschinelles Lernen ist eine gewaltige Aufgabe.
Diese Daten stammen aus der kontinuierlichen Überwachung der Netzwerkleistung, des Zustands und der Sicherheit. Eine zentrale Schwierigkeit bei der Vorbereitung besteht darin, die richtigen Daten und nicht nur viele Daten zu erhalten. Die Datenmenge kann riesig sein, beispielsweise jede Änderung im Status eines Netzwerkbenutzers. KI-Projekte scheitern oft, ohne klar zu definieren, was notwendig ist und was automatisiert werden muss.
Vorbereitung
Der Beginn des Zeitalters der künstlichen Intelligenz bringt drei einzigartige Herausforderungen für die Belegschaft mit sich. Mit anderen Worten: Unternehmen müssen bestehende Mitarbeiter schulen und aus einem hart umkämpften und begrenzten Pool hochqualifizierter Datenwissenschaftler und Dateningenieure rekrutieren.
Um die ersten beiden Hürden zu überwinden, ist es notwendig, entsprechende Investitionen in Ausbildung und Unternehmenskultur zu tätigen. Es gibt immer mehr Möglichkeiten als Menschen für hochqualifizierte technische Berufe, insbesondere im KI/ML-Bereich. Wenn Unternehmen jedoch die richtige Grundlage schaffen und ihre Mitarbeiter regelmäßig schulen, werden sie überrascht sein, wie viel sie aufbauen können. Künstliche Intelligenz ist ein Mittel zur Ergänzung und Verbesserung der Arbeitskräfte und nicht dazu, Menschen zu ersetzen.
Die Implementierung von Tools, die allen Mitarbeitern die Möglichkeit bieten, neu erworbene KI-Fähigkeiten in ihren täglichen Arbeitsabläufen zu nutzen, kann dazu beitragen, die Überzeugung der Menschen zu festigen, dass KI ihre täglichen Erfahrungen verbessern kann. Auch wenn nicht jeder Mitarbeiter darum bitten muss, das Programmieren zu lernen, ist es wichtig, zum Ausdruck zu bringen, dass die Fähigkeit, sich effektiv an AIops zu beteiligen und diese zu nutzen, für viele Karrieren enorme Vorteile bringen kann.
Artificial Intelligence Management
Das Datendilemma geht über die Frage hinaus, wie man geeignete Daten identifiziert. Ebenso herausfordernd ist, was mit all den Daten geschehen soll, insbesondere in Bezug auf Risiko, Compliance und Sicherheit. Künstliche Intelligenz birgt verschiedene Reputations-, Betriebs- und Finanzrisiken, aber aufgrund der diskreten und geschlossenen Natur vieler Projekte werden diese Risiken oft nicht berücksichtigt.
Derzeit gibt es eine Governance-Lücke im Unternehmen, die eines der größten Risiken für Projekte im Bereich der künstlichen Intelligenz darstellt. Obwohl die meisten Manager anerkennen, dass sie für die Durchsetzung von Compliance-Standards verantwortlich sind, hat die Umsetzung dieser Governance und Verfahren für sie oft die niedrigste Priorität. Unternehmen können diese Lücke schließen, indem sie Führungskräfte und funktionsübergreifende Stakeholder integrieren, um sicherzustellen, dass Projekte mit weitreichender Wirkung aus einer unternehmensweiten Perspektive bewertet werden und nicht nur durch die Linse einer einzelnen Abteilung. Darüber hinaus ist es von großem Wert, KI-spezifische Führungskräfte einzustellen und ein internes KI-Zentrum einzurichten, um sicherzustellen, dass der Governance das richtige Maß an Aufmerksamkeit und Investitionen zukommt und die Schaffung einheitlicher Standards im gesamten Unternehmen gefördert wird.
Das obige ist der detaillierte Inhalt vonWas ist das Potenzial für den KI-Betrieb in Unternehmen?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



Diese Seite berichtete am 27. Juni, dass Jianying eine von FaceMeng Technology, einer Tochtergesellschaft von ByteDance, entwickelte Videobearbeitungssoftware ist, die auf der Douyin-Plattform basiert und grundsätzlich kurze Videoinhalte für Benutzer der Plattform produziert Windows, MacOS und andere Betriebssysteme. Jianying kündigte offiziell die Aktualisierung seines Mitgliedschaftssystems an und führte ein neues SVIP ein, das eine Vielzahl von KI-Schwarztechnologien umfasst, wie z. B. intelligente Übersetzung, intelligente Hervorhebung, intelligente Verpackung, digitale menschliche Synthese usw. Preislich beträgt die monatliche Gebühr für das Clipping von SVIP 79 Yuan, die Jahresgebühr 599 Yuan (Hinweis auf dieser Website: entspricht 49,9 Yuan pro Monat), das fortlaufende Monatsabonnement beträgt 59 Yuan pro Monat und das fortlaufende Jahresabonnement beträgt 499 Yuan pro Jahr (entspricht 41,6 Yuan pro Monat). Darüber hinaus erklärte der Cut-Beamte auch, dass diejenigen, die den ursprünglichen VIP abonniert haben, das Benutzererlebnis verbessern sollen

Verbessern Sie die Produktivität, Effizienz und Genauigkeit der Entwickler, indem Sie eine abrufgestützte Generierung und ein semantisches Gedächtnis in KI-Codierungsassistenten integrieren. Übersetzt aus EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, Autor JanakiramMSV. Obwohl grundlegende KI-Programmierassistenten natürlich hilfreich sind, können sie oft nicht die relevantesten und korrektesten Codevorschläge liefern, da sie auf einem allgemeinen Verständnis der Softwaresprache und den gängigsten Mustern beim Schreiben von Software basieren. Der von diesen Coding-Assistenten generierte Code eignet sich zur Lösung der von ihnen zu lösenden Probleme, entspricht jedoch häufig nicht den Coding-Standards, -Konventionen und -Stilen der einzelnen Teams. Dabei entstehen häufig Vorschläge, die geändert oder verfeinert werden müssen, damit der Code in die Anwendung übernommen wird

Um mehr über AIGC zu erfahren, besuchen Sie bitte: 51CTOAI.x Community https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou unterscheidet sich von der traditionellen Fragendatenbank, die überall im Internet zu sehen ist erfordert einen Blick über den Tellerrand hinaus. Large Language Models (LLMs) gewinnen in den Bereichen Datenwissenschaft, generative künstliche Intelligenz (GenAI) und künstliche Intelligenz zunehmend an Bedeutung. Diese komplexen Algorithmen verbessern die menschlichen Fähigkeiten, treiben Effizienz und Innovation in vielen Branchen voran und werden zum Schlüssel für Unternehmen, um wettbewerbsfähig zu bleiben. LLM hat ein breites Anwendungsspektrum und kann in Bereichen wie der Verarbeitung natürlicher Sprache, der Textgenerierung, der Spracherkennung und Empfehlungssystemen eingesetzt werden. Durch das Lernen aus großen Datenmengen ist LLM in der Lage, Text zu generieren

Large Language Models (LLMs) werden auf riesigen Textdatenbanken trainiert und erwerben dort große Mengen an realem Wissen. Dieses Wissen wird in ihre Parameter eingebettet und kann dann bei Bedarf genutzt werden. Das Wissen über diese Modelle wird am Ende der Ausbildung „verdinglicht“. Am Ende des Vortrainings hört das Modell tatsächlich auf zu lernen. Richten Sie das Modell aus oder verfeinern Sie es, um zu erfahren, wie Sie dieses Wissen nutzen und natürlicher auf Benutzerfragen reagieren können. Aber manchmal reicht Modellwissen nicht aus, und obwohl das Modell über RAG auf externe Inhalte zugreifen kann, wird es als vorteilhaft angesehen, das Modell durch Feinabstimmung an neue Domänen anzupassen. Diese Feinabstimmung erfolgt mithilfe von Eingaben menschlicher Annotatoren oder anderer LLM-Kreationen, wobei das Modell auf zusätzliches Wissen aus der realen Welt trifft und dieses integriert

Herausgeber | Der Frage-Antwort-Datensatz (QA) von ScienceAI spielt eine entscheidende Rolle bei der Förderung der Forschung zur Verarbeitung natürlicher Sprache (NLP). Hochwertige QS-Datensätze können nicht nur zur Feinabstimmung von Modellen verwendet werden, sondern auch effektiv die Fähigkeiten großer Sprachmodelle (LLMs) bewerten, insbesondere die Fähigkeit, wissenschaftliche Erkenntnisse zu verstehen und zu begründen. Obwohl es derzeit viele wissenschaftliche QS-Datensätze aus den Bereichen Medizin, Chemie, Biologie und anderen Bereichen gibt, weisen diese Datensätze immer noch einige Mängel auf. Erstens ist das Datenformular relativ einfach, die meisten davon sind Multiple-Choice-Fragen. Sie sind leicht auszuwerten, schränken jedoch den Antwortauswahlbereich des Modells ein und können die Fähigkeit des Modells zur Beantwortung wissenschaftlicher Fragen nicht vollständig testen. Im Gegensatz dazu offene Fragen und Antworten

Maschinelles Lernen ist ein wichtiger Zweig der künstlichen Intelligenz, der Computern die Möglichkeit gibt, aus Daten zu lernen und ihre Fähigkeiten zu verbessern, ohne explizit programmiert zu werden. Maschinelles Lernen hat ein breites Anwendungsspektrum in verschiedenen Bereichen, von der Bilderkennung und der Verarbeitung natürlicher Sprache bis hin zu Empfehlungssystemen und Betrugserkennung, und es verändert unsere Lebensweise. Im Bereich des maschinellen Lernens gibt es viele verschiedene Methoden und Theorien, von denen die fünf einflussreichsten Methoden als „Fünf Schulen des maschinellen Lernens“ bezeichnet werden. Die fünf Hauptschulen sind die symbolische Schule, die konnektionistische Schule, die evolutionäre Schule, die Bayes'sche Schule und die Analogieschule. 1. Der Symbolismus, auch Symbolismus genannt, betont die Verwendung von Symbolen zum logischen Denken und zum Ausdruck von Wissen. Diese Denkrichtung glaubt, dass Lernen ein Prozess der umgekehrten Schlussfolgerung durch das Vorhandene ist

Herausgeber |. KX Im Bereich der Arzneimittelforschung und -entwicklung ist die genaue und effektive Vorhersage der Bindungsaffinität von Proteinen und Liganden für das Arzneimittelscreening und die Arzneimitteloptimierung von entscheidender Bedeutung. Aktuelle Studien berücksichtigen jedoch nicht die wichtige Rolle molekularer Oberflächeninformationen bei Protein-Ligand-Wechselwirkungen. Auf dieser Grundlage schlugen Forscher der Universität Xiamen ein neuartiges Framework zur multimodalen Merkmalsextraktion (MFE) vor, das erstmals Informationen über Proteinoberfläche, 3D-Struktur und -Sequenz kombiniert und einen Kreuzaufmerksamkeitsmechanismus verwendet, um verschiedene Modalitäten zu vergleichen Ausrichtung. Experimentelle Ergebnisse zeigen, dass diese Methode bei der Vorhersage von Protein-Ligand-Bindungsaffinitäten Spitzenleistungen erbringt. Darüber hinaus belegen Ablationsstudien die Wirksamkeit und Notwendigkeit der Proteinoberflächeninformation und der multimodalen Merkmalsausrichtung innerhalb dieses Rahmens. Verwandte Forschungen beginnen mit „S

Laut Nachrichten dieser Website vom 5. Juli veröffentlichte GlobalFoundries am 1. Juli dieses Jahres eine Pressemitteilung, in der die Übernahme der Power-Galliumnitrid (GaN)-Technologie und des Portfolios an geistigem Eigentum von Tagore Technology angekündigt wurde, in der Hoffnung, seinen Marktanteil in den Bereichen Automobile und Internet auszubauen Anwendungsbereiche für Rechenzentren mit künstlicher Intelligenz, um höhere Effizienz und bessere Leistung zu erforschen. Da sich Technologien wie generative künstliche Intelligenz (GenerativeAI) in der digitalen Welt weiterentwickeln, ist Galliumnitrid (GaN) zu einer Schlüssellösung für nachhaltiges und effizientes Energiemanagement, insbesondere in Rechenzentren, geworden. Auf dieser Website wurde die offizielle Ankündigung zitiert, dass sich das Ingenieurteam von Tagore Technology im Rahmen dieser Übernahme mit GF zusammenschließen wird, um die Galliumnitrid-Technologie weiterzuentwickeln. G
