Wie wird künstliche Intelligenz die Biotechnologie verändern?
Maschinelles Lernen und künstliche Intelligenz haben die Welt im Sturm erobert und die Art und Weise verändert, wie Menschen leben und arbeiten. Fortschritte in diesen Bereichen haben sowohl Lob als auch Kritik hervorgerufen. Es ist bekannt, dass KI und ML vielfältige Anwendungen und Vorteile in den unterschiedlichsten Bereichen bieten. Am wichtigsten ist, dass sie die biologische Forschung verändern und zu neuen Entdeckungen im Gesundheitswesen und in der Biotechnologie führen.
Hier sind einige Anwendungsfälle von ML in der Biotechnologie:
Identifizierung genkodierender Regionen
Next Generation Sequencing hat die Genomforschung durch die Sequenzierung von Genen in kurzer Zeit erheblich verbessert. Daher werden Methoden des maschinellen Lernens eingesetzt, um Gen-kodierende Regionen im Genom zu entdecken. Diese auf maschinellem Lernen basierende Genvorhersagetechnologie wird empfindlicher sein als die herkömmliche homologiebasierte Sequenzanalyse.
Strukturvorhersage
PPI wurde bereits im Zusammenhang mit der Proteomik erwähnt. Die Anwendung von ML bei der Strukturvorhersage erhöhte jedoch die Genauigkeit von 70 % auf über 80 %. Die Anwendung von ML im Text Mining ist sehr vielversprechend, wobei Trainingssätze verwendet werden, um neue oder einzigartige pharmakologische Ziele aus vielen Zeitschriftenartikeln und durchsuchten Sekundärdatenbanken zu entdecken.
Neuronale Netze
Deep Learning ist eine Erweiterung neuronaler Netze und ein relativ neues Thema in ML. Der Begriff „Tiefe“ bezieht sich beim Deep Learning auf die Anzahl der Schichten, durch die sich Daten ändern. Daher ähnelt Deep Learning einer mehrschichtigen neuronalen Struktur. Diese vielschichtigen Knoten versuchen zu simulieren, wie das menschliche Gehirn bei der Lösung von Problemen arbeitet. ML nutzt bereits neuronale Netze. Für die Analyse benötigen auf neuronalen Netzwerken basierende ML-Algorithmen verfeinerte oder aussagekräftige Daten aus dem Originaldatensatz. Die zunehmende Datenmenge, die durch die Genomsequenzierung generiert wird, macht es jedoch schwieriger, wichtige Informationen zu analysieren. Mehrere Schichten eines neuronalen Netzwerks filtern Informationen und interagieren, wodurch die Ausgabe verbessert werden kann.
Psychose
Angst, Stress, Substanzstörungen, Essstörungen und andere Symptome einer psychischen Erkrankung sind Beispiele dafür. Die schlechte Nachricht ist, dass die meisten Menschen keine Diagnose erhalten, weil sie nicht sicher sind, ob sie ein Problem haben. Das ist eine schockierende, aber grausame Realität. Bis heute waren Ärzte und Wissenschaftler bei der Vorhersage psychischer Erkrankungen nicht so effektiv. Ja, technologische Innovationen ermöglichen es Gesundheitsfachkräften, intelligente Lösungen zu entwickeln, die nicht nur psychische Erkrankungen erkennen, sondern auch geeignete Diagnose- und Behandlungstechniken empfehlen.
Künstliche Intelligenz im Gesundheitswesen
Maschinelles Lernen und künstliche Intelligenz (KI) werden von Krankenhäusern und Gesundheitsdienstleistern in großem Umfang eingesetzt, um das Wohlbefinden der Patienten zu verbessern, personalisierte Behandlungen umzusetzen, genaue Vorhersagen zu treffen und die Lebensqualität zu verbessern. Es wird auch verwendet, um die Effizienz klinischer Studien zu verbessern und den Prozess der Arzneimittelentwicklung und -vermarktung zu beschleunigen.
Abschließende Gedanken
Die Entwicklung der Digitalisierung hat das 21. Jahrhundert datenzentriert gemacht und betrifft jedes Unternehmen und jede Abteilung. Das Gesundheitswesen, die Biotechnologie und die Biotechnologiebranche sind nicht immun. Unternehmen suchen nach einer Lösung, die ihre Abläufe mit leistungsstarken Lösungen integrieren kann und die Möglichkeit bietet, Daten systematischer, schneller und reibungsloser aufzuzeichnen, auszutauschen und zu übertragen. Bioinformatik, Biomedizin, Netzwerkbiologie und andere biologische Teilbereiche stehen seit langem vor Herausforderungen bei der Verarbeitung biologischer Daten.
Das obige ist der detaillierte Inhalt vonWie wird künstliche Intelligenz die Biotechnologie verändern?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



Diese Seite berichtete am 27. Juni, dass Jianying eine von FaceMeng Technology, einer Tochtergesellschaft von ByteDance, entwickelte Videobearbeitungssoftware ist, die auf der Douyin-Plattform basiert und grundsätzlich kurze Videoinhalte für Benutzer der Plattform produziert Windows, MacOS und andere Betriebssysteme. Jianying kündigte offiziell die Aktualisierung seines Mitgliedschaftssystems an und führte ein neues SVIP ein, das eine Vielzahl von KI-Schwarztechnologien umfasst, wie z. B. intelligente Übersetzung, intelligente Hervorhebung, intelligente Verpackung, digitale menschliche Synthese usw. Preislich beträgt die monatliche Gebühr für das Clipping von SVIP 79 Yuan, die Jahresgebühr 599 Yuan (Hinweis auf dieser Website: entspricht 49,9 Yuan pro Monat), das fortlaufende Monatsabonnement beträgt 59 Yuan pro Monat und das fortlaufende Jahresabonnement beträgt 499 Yuan pro Jahr (entspricht 41,6 Yuan pro Monat). Darüber hinaus erklärte der Cut-Beamte auch, dass diejenigen, die den ursprünglichen VIP abonniert haben, das Benutzererlebnis verbessern sollen

Verbessern Sie die Produktivität, Effizienz und Genauigkeit der Entwickler, indem Sie eine abrufgestützte Generierung und ein semantisches Gedächtnis in KI-Codierungsassistenten integrieren. Übersetzt aus EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, Autor JanakiramMSV. Obwohl grundlegende KI-Programmierassistenten natürlich hilfreich sind, können sie oft nicht die relevantesten und korrektesten Codevorschläge liefern, da sie auf einem allgemeinen Verständnis der Softwaresprache und den gängigsten Mustern beim Schreiben von Software basieren. Der von diesen Coding-Assistenten generierte Code eignet sich zur Lösung der von ihnen zu lösenden Probleme, entspricht jedoch häufig nicht den Coding-Standards, -Konventionen und -Stilen der einzelnen Teams. Dabei entstehen häufig Vorschläge, die geändert oder verfeinert werden müssen, damit der Code in die Anwendung übernommen wird

Um mehr über AIGC zu erfahren, besuchen Sie bitte: 51CTOAI.x Community https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou unterscheidet sich von der traditionellen Fragendatenbank, die überall im Internet zu sehen ist erfordert einen Blick über den Tellerrand hinaus. Large Language Models (LLMs) gewinnen in den Bereichen Datenwissenschaft, generative künstliche Intelligenz (GenAI) und künstliche Intelligenz zunehmend an Bedeutung. Diese komplexen Algorithmen verbessern die menschlichen Fähigkeiten, treiben Effizienz und Innovation in vielen Branchen voran und werden zum Schlüssel für Unternehmen, um wettbewerbsfähig zu bleiben. LLM hat ein breites Anwendungsspektrum und kann in Bereichen wie der Verarbeitung natürlicher Sprache, der Textgenerierung, der Spracherkennung und Empfehlungssystemen eingesetzt werden. Durch das Lernen aus großen Datenmengen ist LLM in der Lage, Text zu generieren

Large Language Models (LLMs) werden auf riesigen Textdatenbanken trainiert und erwerben dort große Mengen an realem Wissen. Dieses Wissen wird in ihre Parameter eingebettet und kann dann bei Bedarf genutzt werden. Das Wissen über diese Modelle wird am Ende der Ausbildung „verdinglicht“. Am Ende des Vortrainings hört das Modell tatsächlich auf zu lernen. Richten Sie das Modell aus oder verfeinern Sie es, um zu erfahren, wie Sie dieses Wissen nutzen und natürlicher auf Benutzerfragen reagieren können. Aber manchmal reicht Modellwissen nicht aus, und obwohl das Modell über RAG auf externe Inhalte zugreifen kann, wird es als vorteilhaft angesehen, das Modell durch Feinabstimmung an neue Domänen anzupassen. Diese Feinabstimmung erfolgt mithilfe von Eingaben menschlicher Annotatoren oder anderer LLM-Kreationen, wobei das Modell auf zusätzliches Wissen aus der realen Welt trifft und dieses integriert

Herausgeber | Der Frage-Antwort-Datensatz (QA) von ScienceAI spielt eine entscheidende Rolle bei der Förderung der Forschung zur Verarbeitung natürlicher Sprache (NLP). Hochwertige QS-Datensätze können nicht nur zur Feinabstimmung von Modellen verwendet werden, sondern auch effektiv die Fähigkeiten großer Sprachmodelle (LLMs) bewerten, insbesondere die Fähigkeit, wissenschaftliche Erkenntnisse zu verstehen und zu begründen. Obwohl es derzeit viele wissenschaftliche QS-Datensätze aus den Bereichen Medizin, Chemie, Biologie und anderen Bereichen gibt, weisen diese Datensätze immer noch einige Mängel auf. Erstens ist das Datenformular relativ einfach, die meisten davon sind Multiple-Choice-Fragen. Sie sind leicht auszuwerten, schränken jedoch den Antwortauswahlbereich des Modells ein und können die Fähigkeit des Modells zur Beantwortung wissenschaftlicher Fragen nicht vollständig testen. Im Gegensatz dazu offene Fragen und Antworten

Maschinelles Lernen ist ein wichtiger Zweig der künstlichen Intelligenz, der Computern die Möglichkeit gibt, aus Daten zu lernen und ihre Fähigkeiten zu verbessern, ohne explizit programmiert zu werden. Maschinelles Lernen hat ein breites Anwendungsspektrum in verschiedenen Bereichen, von der Bilderkennung und der Verarbeitung natürlicher Sprache bis hin zu Empfehlungssystemen und Betrugserkennung, und es verändert unsere Lebensweise. Im Bereich des maschinellen Lernens gibt es viele verschiedene Methoden und Theorien, von denen die fünf einflussreichsten Methoden als „Fünf Schulen des maschinellen Lernens“ bezeichnet werden. Die fünf Hauptschulen sind die symbolische Schule, die konnektionistische Schule, die evolutionäre Schule, die Bayes'sche Schule und die Analogieschule. 1. Der Symbolismus, auch Symbolismus genannt, betont die Verwendung von Symbolen zum logischen Denken und zum Ausdruck von Wissen. Diese Denkrichtung glaubt, dass Lernen ein Prozess der umgekehrten Schlussfolgerung durch das Vorhandene ist

Herausgeber |. KX Im Bereich der Arzneimittelforschung und -entwicklung ist die genaue und effektive Vorhersage der Bindungsaffinität von Proteinen und Liganden für das Arzneimittelscreening und die Arzneimitteloptimierung von entscheidender Bedeutung. Aktuelle Studien berücksichtigen jedoch nicht die wichtige Rolle molekularer Oberflächeninformationen bei Protein-Ligand-Wechselwirkungen. Auf dieser Grundlage schlugen Forscher der Universität Xiamen ein neuartiges Framework zur multimodalen Merkmalsextraktion (MFE) vor, das erstmals Informationen über Proteinoberfläche, 3D-Struktur und -Sequenz kombiniert und einen Kreuzaufmerksamkeitsmechanismus verwendet, um verschiedene Modalitäten zu vergleichen Ausrichtung. Experimentelle Ergebnisse zeigen, dass diese Methode bei der Vorhersage von Protein-Ligand-Bindungsaffinitäten Spitzenleistungen erbringt. Darüber hinaus belegen Ablationsstudien die Wirksamkeit und Notwendigkeit der Proteinoberflächeninformation und der multimodalen Merkmalsausrichtung innerhalb dieses Rahmens. Verwandte Forschungen beginnen mit „S

Laut Nachrichten dieser Website vom 5. Juli veröffentlichte GlobalFoundries am 1. Juli dieses Jahres eine Pressemitteilung, in der die Übernahme der Power-Galliumnitrid (GaN)-Technologie und des Portfolios an geistigem Eigentum von Tagore Technology angekündigt wurde, in der Hoffnung, seinen Marktanteil in den Bereichen Automobile und Internet auszubauen Anwendungsbereiche für Rechenzentren mit künstlicher Intelligenz, um höhere Effizienz und bessere Leistung zu erforschen. Da sich Technologien wie generative künstliche Intelligenz (GenerativeAI) in der digitalen Welt weiterentwickeln, ist Galliumnitrid (GaN) zu einer Schlüssellösung für nachhaltiges und effizientes Energiemanagement, insbesondere in Rechenzentren, geworden. Auf dieser Website wurde die offizielle Ankündigung zitiert, dass sich das Ingenieurteam von Tagore Technology im Rahmen dieser Übernahme mit GF zusammenschließen wird, um die Galliumnitrid-Technologie weiterzuentwickeln. G
