Inhaltsverzeichnis
maschinelles Lernen in Aktion
Neue Anwendungsfälle und Möglichkeiten für Computer Vision
Vision-Algorithmen höherer Ordnung können jetzt Objekte mithilfe feinkörnigerer Merkmale klassifizieren. Die Bestimmung der Marke und des Modells geht tiefer als die Identifizierung des Autos.
Zu den ersten Anwendungsfällen in Unternehmen gehören Qualitätskontrolle, Echtzeitverfolgung der Lieferkette, die Verwendung von Snapshots zur Identifizierung interner Standorte und die Erkennung von Deepfakes.
Heim Technologie-Peripheriegeräte KI Edge AI: Fünf Trends, die Sie im Auge behalten sollten

Edge AI: Fünf Trends, die Sie im Auge behalten sollten

Apr 12, 2023 pm 12:40 PM
人工智能 ai

Edge AI: Fünf Trends, die Sie im Auge behalten sollten

Künstliche Intelligenz am Rande entwickelt sich ständig weiter und hat unzählige Anwendungen, darunter selbstfahrende Autos, Kunst, Gesundheitswesen, personalisierte Werbung und Kundenservice. Im Idealfall bietet die Edge-Architektur eine geringere Latenz, da sie näher an den Anforderungen liegt.

Es wird vorhergesagt, dass der Spitzenmarkt für künstliche Intelligenz von 1,4 Millionen US-Dollar im Jahr 2021 auf 8 Millionen US-Dollar im Jahr 2027 wachsen wird, mit einer durchschnittlichen jährlichen Wachstumsrate von 29,8 %. Ein Großteil dieses Wachstums wird auf Faktoren wie künstliche Intelligenz für das Internet der Dinge, tragbare Verbrauchergeräte und den Bedarf an schnellerer Datenverarbeitung in 5G-Netzwerken zurückzuführen sein. Dies bringt Chancen und Bindung mit sich, da die Echtzeitdaten von Edge AI anfällig für Cyberangriffe sind.

Werfen wir einen Blick auf fünf Trends, die den Bereich Edge AI im nächsten Jahr voraussichtlich prägen werden. Eine der großen Veränderungen heute ist die Möglichkeit, KI-Verarbeitung ohne Cloud-Verbindung auszuführen. Beispielsweise können zwei kürzlich veröffentlichte neue Chipdesigns die Rechenleistung von IoT-Geräten extrem steigern und Remote-Server oder Cloud-Computing überspringen. Ihr aktueller Cortex-M-Prozessor beherrscht die Objekterkennung, während mit dem Ethos-U55 von ARM weitere Funktionen wie Gesten- oder Spracherkennung zum Einsatz kommen. Googles Coral, ein Toolkit zum Erstellen von Produkten mithilfe nativer KI, verspricht ebenfalls, große Mengen an KI „offline“ zu verarbeiten.

maschinelles Lernen in Aktion

Best Practices für maschinelle Lernvorgänge werden beweisen, dass Edge-KI ein wertvoller Geschäftsprozess ist. Die IT-Produktion braucht einen neuen Lebenszyklus – so zumindest die Spekulation bei der Entwicklung von MLOps. MLOps können Unternehmen dabei helfen, Daten zu streamen und an die Edge zu übertragen. Da immer mehr Unternehmen entdecken, was in Bezug auf Edge-KI am besten für sie funktioniert, kann sich ein fortlaufender Aktualisierungszyklus als effektiv erweisen. Um mehr Rechenleistung am Edge leisten zu können, benötigen Unternehmen maßgeschneiderte Chips, die ausreichend Leistung bereitstellen. Ein Beispiel ist ein KI-Beschleunigerchip gepaart mit einer Software-Suite, die im Wesentlichen KI-Modelle in Rechendiagramme umwandelt. IBM veröffentlichte 2021 seine erste Beschleunigerhardware mit dem Ziel, Betrug zu bekämpfen.

Neue Anwendungsfälle und Möglichkeiten für Computer Vision

Computer Vision ist weiterhin einer der Hauptanwendungen von Edge-KI. Eine wichtige Entwicklung in diesem Bereich ist die multimodale künstliche Intelligenz, die Daten aus mehreren Datenquellen bezieht, über das Verständnis natürlicher Sprache hinausgeht, Gesten analysiert und Inspektionen und Visualisierung durchführt. Dies könnte für KI nützlich sein, die nahtlos mit Menschen interagiert, beispielsweise Einkaufsassistenten.

Vision-Algorithmen höherer Ordnung können jetzt Objekte mithilfe feinkörnigerer Merkmale klassifizieren. Die Bestimmung der Marke und des Modells geht tiefer als die Identifizierung des Autos.

Es ist schwierig, ein Modell zu trainieren, um granulare Merkmale zu identifizieren, die für jedes Objekt einzigartig sind. Allerdings sind Methoden wie die Merkmalsdarstellung unter Verwendung feinkörniger Informationen, die Segmentierung zum Extrahieren spezifischer Merkmale, Algorithmen zur Normalisierung von Objektposen und mehrschichtige Faltungs-Neuronale Netze aktuelle Möglichkeiten, dieses Ziel zu erreichen.

Zu den ersten Anwendungsfällen in Unternehmen gehören Qualitätskontrolle, Echtzeitverfolgung der Lieferkette, die Verwendung von Snapshots zur Identifizierung interner Standorte und die Erkennung von Deepfakes.

Das Wachstum der künstlichen Intelligenz bei 5G beschleunigt sich

5G und fortschrittlichere Technologien kommen. Auf Telekommunikationsanbieter warten Satellitennetze und 6G. Für den Rest von uns wird es einige Zeit dauern, bis wir vom 4G-Kernnetz, das mit einigen 5G-Diensten kompatibel ist, vollständig auf die Netze der nächsten Generation umsteigen können.

Was hat das mit künstlicher Edge-Intelligenz zu tun? KI auf 5G kann KI-Anwendungen eine bessere Leistung und Sicherheit verleihen. Es kann einige der Vorteile geringer Latenz bieten, die für künstliche Intelligenz erforderlich sind, und neue Anwendungen wie Fabrikautomatisierung, Mauterhebung und Fahrzeugtelemetrie sowie intelligente Lieferkettenprojekte erschließen.

Es gibt mehr aufkommende Trends in der Edge-KI, als wir auflisten können. Insbesondere kann seine Entwicklung einige Veränderungen auf menschlicher Seite erfordern. Das Edge-KI-Management wird zur Aufgabe der IT-Abteilungen, und die Kosten können durch den Einsatz von IT-Ressourcen optimiert werden, anstatt die Verwaltung von Edge-Lösungen den Geschäftsbereichen zu überlassen.

Das obige ist der detaillierte Inhalt vonEdge AI: Fünf Trends, die Sie im Auge behalten sollten. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

R.E.P.O. Energiekristalle erklärten und was sie tun (gelber Kristall)
1 Monate vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Beste grafische Einstellungen
1 Monate vor By 尊渡假赌尊渡假赌尊渡假赌
Will R.E.P.O. Crossplay haben?
1 Monate vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

CentOS Shutdown -Befehlszeile CentOS Shutdown -Befehlszeile Apr 14, 2025 pm 09:12 PM

Der Befehl centOS stilldown wird heruntergefahren und die Syntax wird von [Optionen] ausgeführt [Informationen]. Zu den Optionen gehören: -h das System sofort stoppen; -P schalten Sie die Leistung nach dem Herunterfahren aus; -r neu starten; -t Wartezeit. Zeiten können als unmittelbar (jetzt), Minuten (Minuten) oder als bestimmte Zeit (HH: MM) angegeben werden. Hinzugefügten Informationen können in Systemmeldungen angezeigt werden.

Was sind die Backup -Methoden für Gitlab auf CentOS? Was sind die Backup -Methoden für Gitlab auf CentOS? Apr 14, 2025 pm 05:33 PM

Backup- und Wiederherstellungsrichtlinie von GitLab im Rahmen von CentOS -System Um die Datensicherheit und Wiederherstellung der Daten zu gewährleisten, bietet GitLab on CentOS eine Vielzahl von Sicherungsmethoden. In diesem Artikel werden mehrere gängige Sicherungsmethoden, Konfigurationsparameter und Wiederherstellungsprozesse im Detail eingeführt, um eine vollständige GitLab -Sicherungs- und Wiederherstellungsstrategie aufzubauen. 1. Manuell Backup Verwenden Sie den GitLab-RakegitLab: Backup: Befehl erstellen, um die manuelle Sicherung auszuführen. Dieser Befehl unterstützt wichtige Informationen wie GitLab Repository, Datenbank, Benutzer, Benutzergruppen, Schlüssel und Berechtigungen. Die Standardsicherungsdatei wird im Verzeichnis/var/opt/gitlab/backups gespeichert. Sie können /etc /gitlab ändern

So überprüfen Sie die CentOS -HDFS -Konfiguration So überprüfen Sie die CentOS -HDFS -Konfiguration Apr 14, 2025 pm 07:21 PM

Vollständige Anleitung zur Überprüfung der HDFS -Konfiguration in CentOS -Systemen In diesem Artikel wird die Konfiguration und den laufenden Status von HDFS auf CentOS -Systemen effektiv überprüft. Die folgenden Schritte helfen Ihnen dabei, das Setup und den Betrieb von HDFs vollständig zu verstehen. Überprüfen Sie die Hadoop -Umgebungsvariable: Stellen Sie zunächst sicher, dass die Hadoop -Umgebungsvariable korrekt eingestellt ist. Führen Sie im Terminal den folgenden Befehl aus, um zu überprüfen, ob Hadoop ordnungsgemäß installiert und konfiguriert ist: Hadoopsion-Check HDFS-Konfigurationsdatei: Die Kernkonfigurationsdatei von HDFS befindet sich im/etc/hadoop/conf/verzeichnis, wobei core-site.xml und hdfs-site.xml von entscheidender Bedeutung sind. verwenden

Wie ist die GPU -Unterstützung für Pytorch bei CentOS? Wie ist die GPU -Unterstützung für Pytorch bei CentOS? Apr 14, 2025 pm 06:48 PM

Aktivieren Sie die Pytorch -GPU -Beschleunigung am CentOS -System erfordert die Installation von CUDA-, CUDNN- und GPU -Versionen von Pytorch. Die folgenden Schritte führen Sie durch den Prozess: Cuda und Cudnn Installation Bestimmen Sie die CUDA-Version Kompatibilität: Verwenden Sie den Befehl nvidia-smi, um die von Ihrer NVIDIA-Grafikkarte unterstützte CUDA-Version anzuzeigen. Beispielsweise kann Ihre MX450 -Grafikkarte CUDA11.1 oder höher unterstützen. Download und installieren Sie Cudatoolkit: Besuchen Sie die offizielle Website von Nvidiacudatoolkit und laden Sie die entsprechende Version gemäß der höchsten CUDA -Version herunter und installieren Sie sie, die von Ihrer Grafikkarte unterstützt wird. Installieren Sie die Cudnn -Bibliothek:

CentOS installieren MySQL CentOS installieren MySQL Apr 14, 2025 pm 08:09 PM

Die Installation von MySQL auf CentOS umfasst die folgenden Schritte: Hinzufügen der entsprechenden MySQL Yum -Quelle. Führen Sie den Befehl mySQL-server aus, um den MySQL-Server zu installieren. Verwenden Sie den Befehl mySQL_SECURE_INSTALLATION, um Sicherheitseinstellungen vorzunehmen, z. B. das Festlegen des Stammbenutzerkennworts. Passen Sie die MySQL -Konfigurationsdatei nach Bedarf an. Tune MySQL -Parameter und optimieren Sie Datenbanken für die Leistung.

Detaillierte Erklärung des Docker -Prinzips Detaillierte Erklärung des Docker -Prinzips Apr 14, 2025 pm 11:57 PM

Docker verwendet Linux -Kernel -Funktionen, um eine effiziente und isolierte Anwendungsumgebung zu bieten. Sein Arbeitsprinzip lautet wie folgt: 1. Der Spiegel wird als schreibgeschützte Vorlage verwendet, die alles enthält, was Sie für die Ausführung der Anwendung benötigen. 2. Das Union File System (UnionFS) stapelt mehrere Dateisysteme, speichert nur die Unterschiede, speichert Platz und beschleunigt. 3. Der Daemon verwaltet die Spiegel und Container, und der Kunde verwendet sie für die Interaktion. 4. Namespaces und CGroups implementieren Container -Isolation und Ressourcenbeschränkungen; 5. Mehrere Netzwerkmodi unterstützen die Containerverbindung. Nur wenn Sie diese Kernkonzepte verstehen, können Sie Docker besser nutzen.

CentOS8 startet SSH CentOS8 startet SSH Apr 14, 2025 pm 09:00 PM

Der Befehl zum Neustart des SSH -Dienstes lautet: SystemCTL Neustart SSHD. Detaillierte Schritte: 1. Zugriff auf das Terminal und eine Verbindung zum Server; 2. Geben Sie den Befehl ein: SystemCTL Neustart SSHD; 1. Überprüfen Sie den Dienststatus: SystemCTL -Status SSHD.

Wie man eine verteilte Schulung von Pytorch auf CentOS betreibt Wie man eine verteilte Schulung von Pytorch auf CentOS betreibt Apr 14, 2025 pm 06:36 PM

Pytorch Distributed Training on CentOS -System erfordert die folgenden Schritte: Pytorch -Installation: Die Prämisse ist, dass Python und PIP im CentOS -System installiert sind. Nehmen Sie abhängig von Ihrer CUDA -Version den entsprechenden Installationsbefehl von der offiziellen Pytorch -Website ab. Für CPU-Schulungen können Sie den folgenden Befehl verwenden: PipinstallTorChTorChVisionTorChaudio Wenn Sie GPU-Unterstützung benötigen, stellen Sie sicher, dass die entsprechende Version von CUDA und CUDNN installiert ist und die entsprechende Pytorch-Version für die Installation verwenden. Konfiguration der verteilten Umgebung: Verteiltes Training erfordert in der Regel mehrere Maschinen oder mehrere Maschinen-Mehrfach-GPUs. Ort

See all articles