Inhaltsverzeichnis
Was ist ein Roboterkoch mit künstlicher Intelligenz?
Vorteile von Robot Chef mit künstlicher Intelligenz
Heim Technologie-Peripheriegeräte KI Roboterkoch mit künstlicher Intelligenz: Die Zukunft des Kochens?

Roboterkoch mit künstlicher Intelligenz: Die Zukunft des Kochens?

Apr 12, 2023 pm 04:01 PM
人工智能 机器人 厨师

​Die kulinarische Welt umfasst viele innovative Technologien. Vor ein paar Jahren hielt man das für unmöglich, doch mittlerweile weiß man, dass Roboterköche viele küchenbezogene Aufgaben erledigen können, wie zum Beispiel das Rühren von Chips und Nudeln, das Braten von Burgern und das Zusammenstellen von Pizzen. Heute können KI-Roboterköche tatsächlich viel mehr. Mit integrierten Sensoren, optischen Kameras und verbesserter KI-Technologie sind diese KI-Roboterköche von Grund auf für Multitasking konzipiert und führen die Bewegungen und Bewegungen eines professionellen menschlichen Kochs in Echtzeit aus.

Was ist ein Roboterkoch mit künstlicher Intelligenz?

Einfach ausgedrückt ist ein KI-Roboterkoch ein mit künstlicher Intelligenz ausgestatteter Roboter, der zum Kochen von Speisen entwickelt wurde. Einer der neuesten KI-Roboterköche, Moley Robotics, ist die weltweit erste vollständig robotergestützte Küche, ein autonomes KI-System, das nahezu jeden Teil des Kochprozesses automatisiert. Dabei handelt es sich um ein Deckengerät, das mit der gesamten Smart Kitchen funktioniert. Es verfügt über zwei Arme, die entlang an der Decke montierter Schienen gleiten und die Temperatur regulieren, die Spüle verwenden, Zutaten mischen und in den Topf gießen sowie den Topf umrühren können. Moley Robotics ist mit Rezepten vorprogrammiert, um mehr als 5.000 Mahlzeiten gleichzeitig zuzubereiten und anschließend aufzuräumen.

Diese Roboter können mithilfe von an Küchengeräten angebrachten Sensoren, mit denen Rezepte analysiert werden, lernen, wie man Lebensmittel zubereitet. Sie sind außerdem in der Lage, mehr als 1.200 Parameter pro Mikrosekunde zu überwachen und können berühren, riechen, sehen und hören. Diese Sinne senden Feedback an ihr Betriebssystem (OS) und erzeugen so eine menschenähnliche Lernschleife. Mithilfe dieser Funktionen können sie viele Küchenaufgaben automatisieren und im Laufe der Zeit neue Fähigkeiten erlernen. Der KI-Roboterkoch verfügt über Tast-, Kontakt- und Näherungssensoren, um Aufgaben aufzuzeichnen, Bewegungen zu erfassen und Rezepte zu kochen. Dadurch kann der Roboter erkennen, wann Zutaten ersetzt werden müssen, Gerichte vorschlagen, Kalorien kontrollieren und Menüs an unterschiedliche Diäten und Lebensstile anpassen. Der KI-Roboterkoch ist in der Lage, sich selbst beizubringen und diese Aufgaben auszuführen, indem er Informationen in einer Datenbank speichert und bei Bedarf abruft.

Alle Anzeichen deuten darauf hin, dass die Welt des 21. Jahrhunderts bereit zu sein scheint, weitere Innovationen von Roboterköchen mit künstlicher Intelligenz zu begrüßen. Experten prognostizieren, dass es bis 2025 482,8 Millionen Smart Homes geben wird. Es wird geschätzt, dass die Weltbevölkerung bis Ende 2022 8 Milliarden erreichen wird. Dies wird zu einer erhöhten Nachfrage nach Lebensmitteln, Druck auf die globale Lebensmittelindustrie und Verbraucherforderungen nach besserer und nachhaltiger Lebensmittelqualität führen. Hier kommt der KI-Roboterkoch zum Einsatz.

Vorteile von Robot Chef mit künstlicher Intelligenz

#1: Lösen Sie das Problem des Personalmangels die Arbeit menschlicher Mängel zu ergänzen oder zu übernehmen, wodurch Kosten gesenkt und das Kundenerlebnis verbessert werden.

#2: Abfall reduzieren

Durch die Zuteilung der erforderlichen Zutaten für jede Mahlzeit trägt der KI-Roboterkoch dazu bei, Lebensmittelverschwendung und Kosten zu reduzieren, indem menschliches Versagen durch Überschätzung eliminiert wird. Darüber hinaus können fortschrittliche KI-Roboterköche die Umgebung von Lebensmittelbehältern überwachen, um den Verderb von Lebensmitteln zu verhindern.

#3: Intelligente Küchenzusammenarbeit

Intelligente Küchen sind mittlerweile in den meisten Haushalten weit verbreitet und mit automatischen Funktionen und halbautomatischen Geräten ausgestattet, die für die effektive Arbeit von KI-gestützten Roboterköchen erforderlich sind. Dies reduziert die Zeit, die menschliche Köche in der Küche verbringen.

#4: Kontamination reduzieren

Der Service von AI Robot Chef besteht darin, das Risiko einer Kontamination durch lebensmittelbedingte Krankheiten zu beseitigen. Sie fördern außerdem Einsparungen, steigern den Unternehmensgewinn und erhöhen die Kundenzufriedenheit und -treue.

Einschränkungen von Robot Chef mit künstlicher Intelligenz

Robot Chef mit künstlicher Intelligenz kann keine Kochzutaten und Lebensmittelzubereitung durchführen, wie zum Beispiel Kartoffeln oder Knoblauch schälen, Karotten hacken, Gemüse oder Obst in Scheiben schneiden. KI-Roboterköche sind derzeit sehr teuer und daher für viele Menschen unerschwinglich. Menschen haben von Natur aus Spaß am Kochen und vertrauen darauf, dass sie ihr Essen essen. Daher ist es unwahrscheinlich, dass KI-Roboterköche menschliche Köche vollständig ersetzen, sondern möglicherweise als Assistenten fungieren.

Der Weg in die Zukunft

Forscher der Universität Cambridge haben einen künstlich intelligenten Roboterkoch entwickelt, der Lebensmittel in verschiedenen Phasen des Kauvorgangs schmecken kann. Obwohl es sich hierbei um ein laufendes Projekt handelt, wäre das ideale Ergebnis ein KI-gestützter Roboterkoch, der alles kauen kann und dabei seinen verbesserten Geschmackssinn einsetzt. Darüber hinaus muss der KI-Roboterkoch über verbesserte Geschmacksrezeptoren verfügen, um die fünf grundlegenden Geschmacksmodi süß, sauer, salzig, bitter und salzig zu besitzen.

Es besteht immer noch Bedarf an der Entwicklung eines KI-Roboterkochs, der die empfangenen detaillierten Daten besser in sein Betriebssystem integrieren kann, um mehr Flexibilität, verbesserte Abläufe und bessere Ergebnisse zu gewährleisten. Es wird erwartet, dass Online-Geisterküchen mit Robotern das nächste große Ding sein werden und es den Menschen ermöglichen, ihre eigenen Menüs und Rezepte zu erstellen und ihre Mahlzeiten online zu bestellen. Diese KI-Roboter bereiten Rezepte gemäß den vorgegebenen Spezifikationen vor und liefern sie in Rekordzeit an die Kunden.

Insgesamt scheint das goldene Zeitalter des technologischen Fortschritts in der Lebensmittelindustrie angekommen zu sein. Obwohl dieser Fortschritt mit einigen Verzögerungen einherging, wird erwartet, dass die weltweite Akzeptanz, die das KI-Roboterkochsystem begleiten wird, seine mehrjährige Entwicklung ausgleichen wird.

Das obige ist der detaillierte Inhalt vonRoboterkoch mit künstlicher Intelligenz: Die Zukunft des Kochens?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

R.E.P.O. Energiekristalle erklärten und was sie tun (gelber Kristall)
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Beste grafische Einstellungen
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. So reparieren Sie Audio, wenn Sie niemanden hören können
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Wie man alles in Myrise freischaltet
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Bytedance Cutting führt SVIP-Supermitgliedschaft ein: 499 Yuan für ein fortlaufendes Jahresabonnement, das eine Vielzahl von KI-Funktionen bietet Bytedance Cutting führt SVIP-Supermitgliedschaft ein: 499 Yuan für ein fortlaufendes Jahresabonnement, das eine Vielzahl von KI-Funktionen bietet Jun 28, 2024 am 03:51 AM

Diese Seite berichtete am 27. Juni, dass Jianying eine von FaceMeng Technology, einer Tochtergesellschaft von ByteDance, entwickelte Videobearbeitungssoftware ist, die auf der Douyin-Plattform basiert und grundsätzlich kurze Videoinhalte für Benutzer der Plattform produziert Windows, MacOS und andere Betriebssysteme. Jianying kündigte offiziell die Aktualisierung seines Mitgliedschaftssystems an und führte ein neues SVIP ein, das eine Vielzahl von KI-Schwarztechnologien umfasst, wie z. B. intelligente Übersetzung, intelligente Hervorhebung, intelligente Verpackung, digitale menschliche Synthese usw. Preislich beträgt die monatliche Gebühr für das Clipping von SVIP 79 Yuan, die Jahresgebühr 599 Yuan (Hinweis auf dieser Website: entspricht 49,9 Yuan pro Monat), das fortlaufende Monatsabonnement beträgt 59 Yuan pro Monat und das fortlaufende Jahresabonnement beträgt 499 Yuan pro Jahr (entspricht 41,6 Yuan pro Monat). Darüber hinaus erklärte der Cut-Beamte auch, dass diejenigen, die den ursprünglichen VIP abonniert haben, das Benutzererlebnis verbessern sollen

Kontexterweiterter KI-Codierungsassistent mit Rag und Sem-Rag Kontexterweiterter KI-Codierungsassistent mit Rag und Sem-Rag Jun 10, 2024 am 11:08 AM

Verbessern Sie die Produktivität, Effizienz und Genauigkeit der Entwickler, indem Sie eine abrufgestützte Generierung und ein semantisches Gedächtnis in KI-Codierungsassistenten integrieren. Übersetzt aus EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, Autor JanakiramMSV. Obwohl grundlegende KI-Programmierassistenten natürlich hilfreich sind, können sie oft nicht die relevantesten und korrektesten Codevorschläge liefern, da sie auf einem allgemeinen Verständnis der Softwaresprache und den gängigsten Mustern beim Schreiben von Software basieren. Der von diesen Coding-Assistenten generierte Code eignet sich zur Lösung der von ihnen zu lösenden Probleme, entspricht jedoch häufig nicht den Coding-Standards, -Konventionen und -Stilen der einzelnen Teams. Dabei entstehen häufig Vorschläge, die geändert oder verfeinert werden müssen, damit der Code in die Anwendung übernommen wird

Sieben coole technische Interviewfragen für GenAI und LLM Sieben coole technische Interviewfragen für GenAI und LLM Jun 07, 2024 am 10:06 AM

Um mehr über AIGC zu erfahren, besuchen Sie bitte: 51CTOAI.x Community https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou unterscheidet sich von der traditionellen Fragendatenbank, die überall im Internet zu sehen ist erfordert einen Blick über den Tellerrand hinaus. Large Language Models (LLMs) gewinnen in den Bereichen Datenwissenschaft, generative künstliche Intelligenz (GenAI) und künstliche Intelligenz zunehmend an Bedeutung. Diese komplexen Algorithmen verbessern die menschlichen Fähigkeiten, treiben Effizienz und Innovation in vielen Branchen voran und werden zum Schlüssel für Unternehmen, um wettbewerbsfähig zu bleiben. LLM hat ein breites Anwendungsspektrum und kann in Bereichen wie der Verarbeitung natürlicher Sprache, der Textgenerierung, der Spracherkennung und Empfehlungssystemen eingesetzt werden. Durch das Lernen aus großen Datenmengen ist LLM in der Lage, Text zu generieren

Kann LLM durch Feinabstimmung wirklich neue Dinge lernen: Die Einführung neuen Wissens kann dazu führen, dass das Modell mehr Halluzinationen hervorruft Kann LLM durch Feinabstimmung wirklich neue Dinge lernen: Die Einführung neuen Wissens kann dazu führen, dass das Modell mehr Halluzinationen hervorruft Jun 11, 2024 pm 03:57 PM

Large Language Models (LLMs) werden auf riesigen Textdatenbanken trainiert und erwerben dort große Mengen an realem Wissen. Dieses Wissen wird in ihre Parameter eingebettet und kann dann bei Bedarf genutzt werden. Das Wissen über diese Modelle wird am Ende der Ausbildung „verdinglicht“. Am Ende des Vortrainings hört das Modell tatsächlich auf zu lernen. Richten Sie das Modell aus oder verfeinern Sie es, um zu erfahren, wie Sie dieses Wissen nutzen und natürlicher auf Benutzerfragen reagieren können. Aber manchmal reicht Modellwissen nicht aus, und obwohl das Modell über RAG auf externe Inhalte zugreifen kann, wird es als vorteilhaft angesehen, das Modell durch Feinabstimmung an neue Domänen anzupassen. Diese Feinabstimmung erfolgt mithilfe von Eingaben menschlicher Annotatoren oder anderer LLM-Kreationen, wobei das Modell auf zusätzliches Wissen aus der realen Welt trifft und dieses integriert

Um ein neues wissenschaftliches und komplexes Frage-Antwort-Benchmark- und Bewertungssystem für große Modelle bereitzustellen, haben UNSW, Argonne, die University of Chicago und andere Institutionen gemeinsam das SciQAG-Framework eingeführt Um ein neues wissenschaftliches und komplexes Frage-Antwort-Benchmark- und Bewertungssystem für große Modelle bereitzustellen, haben UNSW, Argonne, die University of Chicago und andere Institutionen gemeinsam das SciQAG-Framework eingeführt Jul 25, 2024 am 06:42 AM

Herausgeber | Der Frage-Antwort-Datensatz (QA) von ScienceAI spielt eine entscheidende Rolle bei der Förderung der Forschung zur Verarbeitung natürlicher Sprache (NLP). Hochwertige QS-Datensätze können nicht nur zur Feinabstimmung von Modellen verwendet werden, sondern auch effektiv die Fähigkeiten großer Sprachmodelle (LLMs) bewerten, insbesondere die Fähigkeit, wissenschaftliche Erkenntnisse zu verstehen und zu begründen. Obwohl es derzeit viele wissenschaftliche QS-Datensätze aus den Bereichen Medizin, Chemie, Biologie und anderen Bereichen gibt, weisen diese Datensätze immer noch einige Mängel auf. Erstens ist das Datenformular relativ einfach, die meisten davon sind Multiple-Choice-Fragen. Sie sind leicht auszuwerten, schränken jedoch den Antwortauswahlbereich des Modells ein und können die Fähigkeit des Modells zur Beantwortung wissenschaftlicher Fragen nicht vollständig testen. Im Gegensatz dazu offene Fragen und Antworten

Fünf Schulen des maschinellen Lernens, die Sie nicht kennen Fünf Schulen des maschinellen Lernens, die Sie nicht kennen Jun 05, 2024 pm 08:51 PM

Maschinelles Lernen ist ein wichtiger Zweig der künstlichen Intelligenz, der Computern die Möglichkeit gibt, aus Daten zu lernen und ihre Fähigkeiten zu verbessern, ohne explizit programmiert zu werden. Maschinelles Lernen hat ein breites Anwendungsspektrum in verschiedenen Bereichen, von der Bilderkennung und der Verarbeitung natürlicher Sprache bis hin zu Empfehlungssystemen und Betrugserkennung, und es verändert unsere Lebensweise. Im Bereich des maschinellen Lernens gibt es viele verschiedene Methoden und Theorien, von denen die fünf einflussreichsten Methoden als „Fünf Schulen des maschinellen Lernens“ bezeichnet werden. Die fünf Hauptschulen sind die symbolische Schule, die konnektionistische Schule, die evolutionäre Schule, die Bayes'sche Schule und die Analogieschule. 1. Der Symbolismus, auch Symbolismus genannt, betont die Verwendung von Symbolen zum logischen Denken und zum Ausdruck von Wissen. Diese Denkrichtung glaubt, dass Lernen ein Prozess der umgekehrten Schlussfolgerung durch das Vorhandene ist

SOTA Performance, eine multimodale KI-Methode zur Vorhersage der Protein-Ligand-Affinität in Xiamen, kombiniert erstmals molekulare Oberflächeninformationen SOTA Performance, eine multimodale KI-Methode zur Vorhersage der Protein-Ligand-Affinität in Xiamen, kombiniert erstmals molekulare Oberflächeninformationen Jul 17, 2024 pm 06:37 PM

Herausgeber |. KX Im Bereich der Arzneimittelforschung und -entwicklung ist die genaue und effektive Vorhersage der Bindungsaffinität von Proteinen und Liganden für das Arzneimittelscreening und die Arzneimitteloptimierung von entscheidender Bedeutung. Aktuelle Studien berücksichtigen jedoch nicht die wichtige Rolle molekularer Oberflächeninformationen bei Protein-Ligand-Wechselwirkungen. Auf dieser Grundlage schlugen Forscher der Universität Xiamen ein neuartiges Framework zur multimodalen Merkmalsextraktion (MFE) vor, das erstmals Informationen über Proteinoberfläche, 3D-Struktur und -Sequenz kombiniert und einen Kreuzaufmerksamkeitsmechanismus verwendet, um verschiedene Modalitäten zu vergleichen Ausrichtung. Experimentelle Ergebnisse zeigen, dass diese Methode bei der Vorhersage von Protein-Ligand-Bindungsaffinitäten Spitzenleistungen erbringt. Darüber hinaus belegen Ablationsstudien die Wirksamkeit und Notwendigkeit der Proteinoberflächeninformation und der multimodalen Merkmalsausrichtung innerhalb dieses Rahmens. Verwandte Forschungen beginnen mit „S

GlobalFoundries erschließt Märkte wie KI und erwirbt die Galliumnitrid-Technologie von Tagore Technology und zugehörige Teams GlobalFoundries erschließt Märkte wie KI und erwirbt die Galliumnitrid-Technologie von Tagore Technology und zugehörige Teams Jul 15, 2024 pm 12:21 PM

Laut Nachrichten dieser Website vom 5. Juli veröffentlichte GlobalFoundries am 1. Juli dieses Jahres eine Pressemitteilung, in der die Übernahme der Power-Galliumnitrid (GaN)-Technologie und des Portfolios an geistigem Eigentum von Tagore Technology angekündigt wurde, in der Hoffnung, seinen Marktanteil in den Bereichen Automobile und Internet auszubauen Anwendungsbereiche für Rechenzentren mit künstlicher Intelligenz, um höhere Effizienz und bessere Leistung zu erforschen. Da sich Technologien wie generative künstliche Intelligenz (GenerativeAI) in der digitalen Welt weiterentwickeln, ist Galliumnitrid (GaN) zu einer Schlüssellösung für nachhaltiges und effizientes Energiemanagement, insbesondere in Rechenzentren, geworden. Auf dieser Website wurde die offizielle Ankündigung zitiert, dass sich das Ingenieurteam von Tagore Technology im Rahmen dieser Übernahme mit GF zusammenschließen wird, um die Galliumnitrid-Technologie weiterzuentwickeln. G

See all articles