Heim > Backend-Entwicklung > Python-Tutorial > Python crawlt Wetterdaten und visuelle Analysen

Python crawlt Wetterdaten und visuelle Analysen

王林
Freigeben: 2023-04-12 18:37:11
nach vorne
2334 Leute haben es durchsucht

Python crawlt Wetterdaten und visuelle Analysen

Text

Hallo zusammen, ich bin Python Artificial Intelligence Technology

Wir werden auf die Wettervorhersage achten Jeden Tag können wir Kleidung hinzufügen oder ausziehen und die Reise entsprechend dem zukünftigen Wetter gestalten. Tägliche Temperatur, Windgeschwindigkeit und -richtung, relative Luftfeuchtigkeit, Luftqualität usw. rücken in den Mittelpunkt der Aufmerksamkeit. Es werden Ergebnisse wie Temperatur- und Luftfeuchtigkeitsänderungskurven, Luftqualitätskarten und Windrichtungsradarkarten erhalten, die eine effektive Methode zum Erhalten zukünftiger Wetterinformationen darstellen.

1. Datenerfassung

Website-Link anfordern

Überprüfen Sie zunächst die URL des China Weather Network: http://www.weather.com. cn /weather/101280701.shtml Besuchen Sie die lokale Wetter-URL hier. Wenn Sie verschiedene Regionen crawlen möchten, müssen Sie nur die letzte Gebietsnummer 101280701 ändern. Das Wetter vorne stellt die 7-Tage-Webseite dar, Weather1d stellt den aktuellen Tag dar und Weather15d repräsentiert den Himmel der nächsten 14 Tage. Hier besuchen wir hauptsächlich das 7- und 14-tägige China Weather Network. Verwenden Sie die Methode „requests.get()“, um die Webseite anzufordern. Wenn der Zugriff erfolgreich ist, erhalten Sie den gesamten Zeichenfolgentext der Webseite. Dies ist der Anfrageprozess.

def getHTMLtext(url):
"""请求获得网页内容"""
 try:
r = requests.get(url, timeout = 30)
r.raise_for_status()
r.encoding = r.apparent_encoding
print("成功访问")
return r.text
 except:
print("访问错误")
 return" "
Nach dem Login kopieren

Nützliche Informationen extrahieren

Die BeautifulSoup-Bibliothek wird verwendet, um Daten aus der gerade erhaltenen Zeichenfolge zu extrahieren. Überprüfen Sie zunächst die Webseite und suchen Sie das Tag, das die Daten abrufen muss : #🎜🎜 #

Python crawlt Wetterdaten und visuelle Analysen

Sie finden die 7-Tage-Dateninformationen im div-Tag und id="7d" sowie Datum, Wetter, Temperatur, Wind Level und andere Informationen sind alle im UL- und LI-Tag enthalten, sodass wir BeautifulSoup verwenden können, um das div-Tag id="7d" im erhaltenen Webseitentext zu finden, alle darin enthaltenen UL- und LI-Tags herauszufinden und dann die entsprechenden zu extrahieren Datenwert im Tag und speichern Sie ihn in der entsprechenden Liste.

Ein Detail, das hier zu beachten ist, ist, dass das Datum manchmal nicht die höchste Temperatur aufweist und die Situation ohne Daten beurteilt und verarbeitet werden muss. Darüber hinaus müssen einige Datenspeicherformate im Voraus verarbeitet werden, z. B. das Celsius-Symbol hinter der Temperatur, die Extraktion von Datumszahlen und die Extraktion von Text auf Windebene. Dies erfordert eine Zeichensuche und eine String-Slice-Verarbeitung.

def get_content(html):
"""处理得到有用信息保存数据文件"""
final = []# 初始化一个列表保存数据
bs = BeautifulSoup(html, "html.parser")# 创建BeautifulSoup对象
body = bs.body
data = body.find('div', {'id': '7d'})# 找到div标签且id = 7d
Nach dem Login kopieren

Das Folgende crawlt die Daten des Tages

data2 = body.find_all('div',{'class':'left-div'})
text = data2[2].find('script').string
text = text[text.index('=')+1 :-2] # 移除改var data=将其变为json数据
jd = json.loads(text)
dayone = jd['od']['od2'] # 找到当天的数据
final_day = [] # 存放当天的数据
count = 0
for i in dayone:
temp = []
if count <=23:
temp.append(i['od21']) # 添加时间
temp.append(i['od22']) # 添加当前时刻温度
temp.append(i['od24']) # 添加当前时刻风力方向
temp.append(i['od25']) # 添加当前时刻风级
temp.append(i['od26']) # 添加当前时刻降水量
temp.append(i['od27']) # 添加当前时刻相对湿度
temp.append(i['od28']) # 添加当前时刻控制质量
#print(temp)
final_day.append(temp)
count = count +1
Nach dem Login kopieren

Das Folgende crawlt die Daten von 7 Tagen

ul = data.find('ul')# 找到所有的ul标签
li = ul.find_all('li')# 找到左右的li标签
i = 0 # 控制爬取的天数
for day in li:# 遍历找到的每一个li
if i < 7 and i > 0:
temp = []# 临时存放每天的数据
date = day.find('h1').string # 得到日期
date = date[0:date.index('日')] # 取出日期号
temp.append(date)
inf = day.find_all('p')# 找出li下面的p标签,提取第一个p标签的值,即天气
temp.append(inf[0].string)
 tem_low = inf[1].find('i').string # 找到最低气温
 if inf[1].find('span') is None: # 天气预报可能没有最高气温
 tem_high = None
 else:
 tem_high = inf[1].find('span').string# 找到最高气温
 temp.append(tem_low[:-1])
 if tem_high[-1] == '℃':
temp.append(tem_high[:-1])
 else:
temp.append(tem_high)
 wind = inf[2].find_all('span')# 找到风向
 for j in wind:
temp.append(j['title'])
 wind_scale = inf[2].find('i').string # 找到风级
 index1 = wind_scale.index('级')
 temp.append(int(wind_scale[index1-1:index1]))
 final.append(temp)
i = i + 1
return final_day,final
Nach dem Login kopieren

Ähnlich für /weather15d: 15 Tage Derselbe Vorgang wurde durchgeführt. Es wurde festgestellt, dass nur 8–14 Tage in seiner 15-Tage-Webseite enthalten waren. Hier haben wir die beiden Webseiten separat besucht und führte die durch das Crawlen erhaltenen Daten der letzten 14 Tage zusammen. - Die Vorderseite ist der Daten-Crawling-Prozess für die nächsten 14 Tage. Nach der Suche wurde festgestellt, dass es sich um JSON-Daten handelt. Sie können die Daten des Tages über JSON abrufen .loads()-Methode und extrahieren Sie dann die Wetterinformationen des Tages.

Python crawlt Wetterdaten und visuelle Analysen

Speichern Sie die CSV-Datei

Die gecrawlten Daten wurden zuvor zur Liste hinzugefügt. Hier stellen wir die CSV-Bibliothek vor und verwenden sie f_csv. Die Methoden writerow(header) und f_csv.writerows(data) schreiben jeweils den Header und die Daten jeder Zeile. Hier werden die Daten für einen Tag und die nächsten 14 Tage separat gespeichert und als Weather1.csv und Weather14.csv gespeichert Das Folgende ist das Tabellendiagramm, das sie gespeichert haben:

Python crawlt Wetterdaten und visuelle Analysen

Python crawlt Wetterdaten und visuelle Analysen2 #

Die Temperaturänderungskurve des Tages

verwendet die Methode plt.plot() in matplotlib, um die Temperaturänderungskurve von 24 Stunden am Tag zu zeichnen, und verwendet die Methode plt.text() Methode, um die höchsten und niedrigsten Temperaturen anzuzeigen und die durchschnittliche Temperaturlinie zu zeichnen. Das Bild unten ist die Temperaturänderungskurve: (Code finden Sie im Anhang)

Großartig! N Open-Source-Projekte, die für die Übernahme privater Arbeiten unerlässlich sind! Beeilen Sie sich und holen Sie es ab Die Temperatur liegt bei etwa 20,4℃. Die Zeitanalyse ergab, dass der Temperaturunterschied zwischen Tag und Nacht 5°C beträgt, wobei die niedrigen Temperaturen am frühen Morgen und die hohen Temperaturen vom Mittag bis zum Nachmittag verteilt sind.

Tagesdiagramm der Änderungskurve der relativen Luftfeuchtigkeit

Verwenden Sie die Methode plt.plot() in matplotlib, um die Änderungskurve der Luftfeuchtigkeit für 24 Stunden am Tag zu zeichnen und den Durchschnitt zu zeichnen Linie der relativen Luftfeuchtigkeit, unten Das Bild zeigt die Luftfeuchtigkeitsänderungskurve: (Code siehe Anhang)

Python crawlt Wetterdaten und visuelle Analysen

Die Analyse ergab, dass die höchste relative Luftfeuchtigkeit an diesem Tag 86 % beträgt, die niedrigste relative Luftfeuchtigkeit 58 °C und die durchschnittliche relative Luftfeuchtigkeit etwa 75 %. Durch Zeitanalyse ist die Luftfeuchtigkeit am frühen Morgen relativ hoch Die Luftfeuchtigkeit ist am Nachmittag bis zur Abenddämmerung niedrig.

Korrelationsdiagramm für Temperatur und Luftfeuchtigkeit

Durch die Analyse der beiden vorherigen Abbildungen können wir erkennen, dass ein Zusammenhang zwischen Temperatur und Luftfeuchtigkeit besteht. Um diesen Zusammenhang klarer und intuitiver zu spüren, verwenden Sie plt.scatter(). Die Methode zum Teilen der Temperatur ist die Abszisse und die Luftfeuchtigkeit ist die Ordinate. Die Punkte zu jedem Zeitpunkt werden in der Grafik angezeigt und der Korrelationskoeffizient wird berechnet. Das folgende Bild ist die Ergebnisgrafik:

Python crawlt Wetterdaten und visuelle Analysen

Analyse kann Finden Sie heraus, dass die Temperatur und die Luftfeuchtigkeit eines Tages eine starke Korrelation aufweisen, was bedeutet, dass sie negativ mit der Zeit korrelieren, und weitere Analysen zeigen, dass bei niedrigerer Temperatur mehr Feuchtigkeit in der Luft vorhanden ist Die Luftfeuchtigkeit ist natürlicherweise höher, die Feuchtigkeit verdunstet und die Luft ist trockener, was mit normalen Klimaphänomenen übereinstimmt.

Luftqualitätsindex-Balkendiagramm

Der Luftqualitätsindex AQI ist ein Index, der die Luftqualitätsbedingungen quantitativ beschreibt. Je größer der Wert, desto schwerwiegender ist die Luftverschmutzung und desto größer ist der Schaden für die menschliche Gesundheit. Der Luftqualitätsindex wird im Allgemeinen in 6 Stufen unterteilt. Je höher die Stufe, desto schwerwiegender ist die Verschmutzung. Im Folgenden wird ein Histogramm der Luftqualität für 24 Stunden am Tag und entsprechend den sechs Stufen erstellt , das entsprechende Histogramm Die Farbe wechselt ebenfalls von hell nach dunkel, was ebenfalls darauf hinweist, dass die Verschmutzung allmählich zunimmt, wodurch die Verschmutzungssituation intuitiver dargestellt wird. Der höchste und der niedrigste Luftqualitätsindex werden ebenfalls markiert und der durchschnittliche Luftqualitätsindex wird mit eingezeichnet Eine gepunktete Linie. Die folgende Abbildung ist das Ergebnis der Zeichnung:

Python crawlt Wetterdaten und visuelle Analysen

Das obige ist die Kontrollqualitätskarte von Zhuhai im Süden. Es ist ersichtlich, dass der höchste Luftqualitätsindex ebenfalls im gesunden Bereich liegt. Die Analyse zeigt, dass der höchste Luftqualitätsindex an diesem Tag 35 erreichte, der niedrigste jedoch nur 14 und der Durchschnitt bei etwa 25 liegt Grundsätzlich ist die Luft am frühen Morgen (4-9 Uhr) am besten, und die Luftverschmutzung ist am Nachmittag am stärksten, sodass Sie im Allgemeinen am frühen Morgen nach draußen gehen können, um frische Luft zu atmen, wenn die Verschmutzung minimal ist.

Die Luftqualitätskarte unten stammt aus einer Stadt im Norden. Sie können sehen, dass die Umwelt hier weitaus schlechter ist als in Zhuhai.

Python crawlt Wetterdaten und visuelle Analysen

Radardiagramm für Windrichtung und Windstärke

Statistik der Windstärke und Windrichtung für einen Tag Da die Windstärke und die Windrichtung besser mit Polarkoordinaten dargestellt werden können, wird die Polarkoordinatenmethode zur Anzeige der Windstärke verwendet und Windrichtungsdiagramm für den Tag. Er ist in 8 Teile unterteilt, wobei jeder Teil eine Windrichtung darstellt und der Radius die durchschnittliche Windstärke darstellt. Das Endergebnis ist wie folgt:

Python crawlt Wetterdaten und visuelle Analysen

Die Analyse kann ergeben, dass der Südwestwind an diesem Tag am windigsten ist und die durchschnittliche Windstärke die Stärke 1,75 erreichte, wobei ein kleiner Teil der Nordostwinde die Stärke 1,0 erreichte und von anderen kein Wind wehte leere Anweisungen.

Kurvendiagramm für hohe und niedrige Temperaturen für die nächsten 14 Tage

Statistik der Änderungen für hohe und niedrige Temperaturen für die nächsten 14 Tage, und zeichnen Sie die jeweiligen Änderungskurvendiagramme, indem Sie die Durchschnittstemperaturlinien mit gestrichelten Linien zeichnen Die endgültigen Ergebnisse lauten wie folgt:

Python crawlt Wetterdaten und visuelle Analysen

Die Analyse ergab, dass die durchschnittliche Höchsttemperatur in den nächsten 14 Tagen 30,5℃ beträgt. Die Temperatur ist immer noch relativ hoch, aber am 8. Tag wird es eine Abkühlung geben Die Tiefsttemperaturen müssen auf eine Abkühlung vorbereitet sein und beginnen am 8. Tag zu sinken. Die Höchsttemperaturen sind ebenfalls gesunken, und die Tiefsttemperaturen liegen im Durchschnitt bei etwa 27°C.

Radardiagramm für Windrichtung und Windstärke für die nächsten 14 Tage

Gibt die Windrichtung und die durchschnittliche Windstärke für die nächsten 14 Tage an und verwendet wie zuvor Polarkoordinaten, wobei der Kreis in 8 Teile unterteilt wird, die 8 Richtungen darstellen Je höher die Windstärke, desto höher ist das Endergebnis:

Python crawlt Wetterdaten und visuelle Analysen

Die Analyse kann ergeben, dass die Hauptwindrichtungen Südost- und Südwestwinde in den nächsten 14 Tagen die höchste Windstärke erreichen. und die niedrigste durchschnittliche Westwindstärke ist Stufe 3.

Klimaverteilungs-Kreisdiagramm für die nächsten 14 Tage

Zeigt das Klima für die nächsten 14 Tage an und ermittelt die Gesamtzahl der Tage für jedes Klima. Zeichnen Sie abschließend das Kreisdiagramm für jedes Klima. Die Ergebnisse sind wie folgt:

Python crawlt Wetterdaten und visuelle Analysen

分析可以发现未来14天气候基本是“雨”、“阴转雨”和“阵雨”,下雨的天数较多,结合前面的气温分布图可以看出在第8-9天气温高温下降,可以推测当天下雨,导致气温下降。

3、结论

1.首先根据爬取的温湿度数据进行的分析,温度从早上低到中午高再到晚上低,湿度和温度的趋势相反,通过相关系数发现温度和湿度有强烈的负相关关系,经查阅资料发现因为随着温度升高水蒸汽蒸发加剧,空气中水分降低湿度降低。当然,湿度同时受气压和雨水的影响,下雨湿度会明显增高。

2.经查阅资料空气质量不仅跟工厂、汽车等排放的烟气、废气等有关,更为重要的是与气象因素有关。由于昼夜温差明显变化,当地面温度高于高空温度时,空气上升,污染物易被带到高空扩散;当地面温度低于一定高度的温度时,天空形成逆温层,它像一个大盖子一样压在地面上空,使地表空气中各种污染物不易扩散。一般在晚间和清晨影响较大,而当太阳出来后,地面迅速升温,逆温层就会逐渐消散,于是污染空气也就扩散了。

3.风是由气压在水平方向分布的不均匀导致的。风受大气环流、地形、水域等不同因素的综合影响,表现形式多种多样,如季风、地方性的海陆风、山谷风等,一天的风向也有不同的变化,根据未来14天的风向雷达图可以发现未来所有风向基本都有涉及,并且没有特别的某个风向,原因可能是近期没有降水和气文变化不大,导致风向也没有太大的变化规律。

4.天气是指某一个地区距离地表较近的大气层在短时间内的具体状态。跟某瞬时内大气中各种气象要素分布的综合表现。根据未来14天的天气和温度变化可以大致推断出某个时间的气候,天气和温度之间也是有联系的。

4、代码框架

代码主要分为weather.py:对中国天气网进行爬取天气数据并保存csv文件;data1_analysis.py:对当天的天气信息进行可视化处理;data14_analysis.py:对未来14天的天气信息进行可视化处理。下面是代码的结构图:

Python crawlt Wetterdaten und visuelle Analysen

附源代码

weather.py

# weather.py
import requests
from bs4 import BeautifulSoup
import csv
import json
def getHTMLtext(url):
"""请求获得网页内容"""
 try:
r = requests.get(url, timeout = 30)
r.raise_for_status()
r.encoding = r.apparent_encoding
print("成功访问")
return r.text
 except:
print("访问错误")
return" "
def get_content(html):
"""处理得到有用信息保存数据文件"""
final = []# 初始化一个列表保存数据
bs = BeautifulSoup(html, "html.parser")# 创建BeautifulSoup对象
body = bs.body
data = body.find('div', {<!-- -->'id': '7d'})# 找到div标签且id = 7d
# 下面爬取当天的数据
data2 = body.find_all('div',{<!-- -->'class':'left-div'})
text = data2[2].find('script').string
text = text[text.index('=')+1 :-2] # 移除改var data=将其变为json数据
jd = json.loads(text)
dayone = jd['od']['od2'] # 找到当天的数据
final_day = [] # 存放当天的数据
count = 0
for i in dayone:
 temp = []
 if count <=23:
temp.append(i['od21']) # 添加时间
temp.append(i['od22']) # 添加当前时刻温度
temp.append(i['od24']) # 添加当前时刻风力方向
temp.append(i['od25']) # 添加当前时刻风级
temp.append(i['od26']) # 添加当前时刻降水量
temp.append(i['od27']) # 添加当前时刻相对湿度
temp.append(i['od28']) # 添加当前时刻控制质量
#print(temp)
final_day.append(temp)
 count = count +1
 # 下面爬取7天的数据
ul = data.find('ul')# 找到所有的ul标签
li = ul.find_all('li')# 找到左右的li标签
i = 0 # 控制爬取的天数
for day in li:# 遍历找到的每一个li
if i < 7 and i > 0:
temp = []# 临时存放每天的数据
date = day.find('h1').string # 得到日期
date = date[0:date.index('日')] # 取出日期号
temp.append(date)
inf = day.find_all('p')# 找出li下面的p标签,提取第一个p标签的值,即天气
temp.append(inf[0].string)
tem_low = inf[1].find('i').string # 找到最低气温
if inf[1].find('span') is None: # 天气预报可能没有最高气温
tem_high = None
else:
tem_high = inf[1].find('span').string# 找到最高气温
temp.append(tem_low[:-1])
if tem_high[-1] == '℃':
 temp.append(tem_high[:-1])
else:
 temp.append(tem_high)
wind = inf[2].find_all('span')# 找到风向
for j in wind:
 temp.append(j['title'])
wind_scale = inf[2].find('i').string # 找到风级
index1 = wind_scale.index('级')
temp.append(int(wind_scale[index1-1:index1]))
final.append(temp)
i = i + 1
return final_day,final
#print(final)
def get_content2(html):
"""处理得到有用信息保存数据文件"""
final = []# 初始化一个列表保存数据
bs = BeautifulSoup(html, "html.parser")# 创建BeautifulSoup对象
body = bs.body
data = body.find('div', {<!-- -->'id': '15d'})# 找到div标签且id = 15d
ul = data.find('ul')# 找到所有的ul标签
li = ul.find_all('li')# 找到左右的li标签
final = []
i = 0 # 控制爬取的天数
for day in li: # 遍历找到的每一个li
if i < 8:
temp = [] # 临时存放每天的数据
date = day.find('span',{<!-- -->'class':'time'}).string# 得到日期
date = date[date.index('(')+1:-2]# 取出日期号
temp.append(date)
weather = day.find('span',{<!-- -->'class':'wea'}).string# 找到天气
temp.append(weather)
tem = day.find('span',{<!-- -->'class':'tem'}).text# 找到温度
temp.append(tem[tem.index('/')+1:-1]) # 找到最低气温
temp.append(tem[:tem.index('/')-1])# 找到最高气温
wind = day.find('span',{<!-- -->'class':'wind'}).string# 找到风向
if '转' in wind: # 如果有风向变化
 temp.append(wind[:wind.index('转')])
 temp.append(wind[wind.index('转')+1:])
else: # 如果没有风向变化,前后风向一致
 temp.append(wind)
 temp.append(wind)
wind_scale = day.find('span',{<!-- -->'class':'wind1'}).string# 找到风级
index1 = wind_scale.index('级')
temp.append(int(wind_scale[index1-1:index1]))
final.append(temp)
return final
def write_to_csv(file_name, data, day=14):
"""保存为csv文件"""
with open(file_name, 'a', errors='ignore', newline='') as f:
 if day == 14:
header = ['日期','天气','最低气温','最高气温','风向1','风向2','风级']
 else:
header = ['小时','温度','风力方向','风级','降水量','相对湿度','空气质量']
 f_csv = csv.writer(f)
 f_csv.writerow(header)
 f_csv.writerows(data)
def main():
"""主函数"""
print("Weather test")
# 珠海
url1 = 'http://www.weather.com.cn/weather/101280701.shtml'# 7天天气中国天气网
url2 = 'http://www.weather.com.cn/weather15d/101280701.shtml' # 8-15天天气中国天气网
html1 = getHTMLtext(url1)
data1, data1_7 = get_content(html1)# 获得1-7天和当天的数据
html2 = getHTMLtext(url2)
data8_14 = get_content2(html2) # 获得8-14天数据
data14 = data1_7 + data8_14
#print(data)
write_to_csv('weather14.csv',data14,14) # 保存为csv文件
write_to_csv('weather1.csv',data1,1)
if __name__ == '__main__':
main()
Nach dem Login kopieren

data1_analysis.py:

# data1_analysis.py
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import math
def tem_curve(data):
"""温度曲线绘制"""
hour = list(data['小时'])
tem = list(data['温度'])
for i in range(0,24):
 if math.isnan(tem[i]) == True:
tem[i] = tem[i-1]
 tem_ave = sum(tem)/24 # 求平均温度
tem_max = max(tem)
tem_max_hour = hour[tem.index(tem_max)] # 求最高温度
tem_min = min(tem)
tem_min_hour = hour[tem.index(tem_min)] # 求最低温度
x = []
y = []
for i in range(0, 24):
 x.append(i)
 y.append(tem[hour.index(i)])
plt.figure(1)
plt.plot(x,y,color='red',label='温度') # 画出温度曲线
plt.scatter(x,y,color='red') # 点出每个时刻的温度点
plt.plot([0, 24], [tem_ave, tem_ave], c='blue', linestyle='--',label='平均温度')# 画出平均温度虚线
plt.text(tem_max_hour+0.15, tem_max+0.15, str(tem_max), ha='center', va='bottom', fontsize=10.5)# 标出最高温度
plt.text(tem_min_hour+0.15, tem_min+0.15, str(tem_min), ha='center', va='bottom', fontsize=10.5)# 标出最低温度
plt.xticks(x)
plt.legend()
plt.title('一天温度变化曲线图')
plt.xlabel('时间/h')
plt.ylabel('摄氏度/℃')
plt.show()
def hum_curve(data):
"""相对湿度曲线绘制"""
hour = list(data['小时'])
hum = list(data['相对湿度'])
for i in range(0,24):
 if math.isnan(hum[i]) == True:
hum[i] = hum[i-1]
 hum_ave = sum(hum)/24 # 求平均相对湿度
hum_max = max(hum)
hum_max_hour = hour[hum.index(hum_max)] # 求最高相对湿度
hum_min = min(hum)
hum_min_hour = hour[hum.index(hum_min)] # 求最低相对湿度
x = []
y = []
for i in range(0, 24):
 x.append(i)
 y.append(hum[hour.index(i)])
plt.figure(2)
plt.plot(x,y,color='blue',label='相对湿度') # 画出相对湿度曲线
plt.scatter(x,y,color='blue') # 点出每个时刻的相对湿度
plt.plot([0, 24], [hum_ave, hum_ave], c='red', linestyle='--',label='平均相对湿度')# 画出平均相对湿度虚线
plt.text(hum_max_hour+0.15, hum_max+0.15, str(hum_max), ha='center', va='bottom', fontsize=10.5)# 标出最高相对湿度
plt.text(hum_min_hour+0.15, hum_min+0.15, str(hum_min), ha='center', va='bottom', fontsize=10.5)# 标出最低相对湿度
plt.xticks(x)
plt.legend()
plt.title('一天相对湿度变化曲线图')
plt.xlabel('时间/h')
plt.ylabel('百分比/%')
plt.show()
def air_curve(data):
"""空气质量曲线绘制"""
hour = list(data['小时'])
air = list(data['空气质量'])
print(type(air[0]))
for i in range(0,24):
 if math.isnan(air[i]) == True:
air[i] = air[i-1]
 air_ave = sum(air)/24 # 求平均空气质量
air_max = max(air)
air_max_hour = hour[air.index(air_max)] # 求最高空气质量
air_min = min(air)
air_min_hour = hour[air.index(air_min)] # 求最低空气质量
x = []
y = []
for i in range(0, 24):
 x.append(i)
 y.append(air[hour.index(i)])
plt.figure(3)

for i in range(0,24):
 if y[i] <= 50:
plt.bar(x[i],y[i],color='lightgreen',width=0.7)# 1等级
 elif y[i] <= 100:
plt.bar(x[i],y[i],color='wheat',width=0.7) # 2等级
 elif y[i] <= 150:
plt.bar(x[i],y[i],color='orange',width=0.7) # 3等级
 elif y[i] <= 200:
plt.bar(x[i],y[i],color='orangered',width=0.7)# 4等级
 elif y[i] <= 300:
plt.bar(x[i],y[i],color='darkviolet',width=0.7)# 5等级
 elif y[i] > 300:
plt.bar(x[i],y[i],color='maroon',width=0.7) # 6等级
plt.plot([0, 24], [air_ave, air_ave], c='black', linestyle='--')# 画出平均空气质量虚线
plt.text(air_max_hour+0.15, air_max+0.15, str(air_max), ha='center', va='bottom', fontsize=10.5)# 标出最高空气质量
plt.text(air_min_hour+0.15, air_min+0.15, str(air_min), ha='center', va='bottom', fontsize=10.5)# 标出最低空气质量
plt.xticks(x)
plt.title('一天空气质量变化曲线图')
plt.xlabel('时间/h')
plt.ylabel('空气质量指数AQI')
plt.show()
def wind_radar(data):
"""风向雷达图"""
wind = list(data['风力方向'])
wind_speed = list(data['风级'])
for i in range(0,24):
 if wind[i] == "北风":
wind[i] = 90
 elif wind[i] == "南风":
wind[i] = 270
 elif wind[i] == "西风":
wind[i] = 180
 elif wind[i] == "东风":
wind[i] = 360
 elif wind[i] == "东北风":
wind[i] = 45
 elif wind[i] == "西北风":
wind[i] = 135
 elif wind[i] == "西南风":
wind[i] = 225
 elif wind[i] == "东南风":
wind[i] = 315
degs = np.arange(45,361,45)
temp = []
for deg in degs:
 speed = []
 # 获取 wind_deg 在指定范围的风速平均值数据
 for i in range(0,24):
if wind[i] == deg:
 speed.append(wind_speed[i])
 if len(speed) == 0:
temp.append(0)
 else:
temp.append(sum(speed)/len(speed))
print(temp)
N = 8
theta = np.arange(0.+np.pi/8,2*np.pi+np.pi/8,2*np.pi/8)
# 数据极径
radii = np.array(temp)
# 绘制极区图坐标系
plt.axes(polar=True)
# 定义每个扇区的RGB值(R,G,B),x越大,对应的颜色越接近蓝色
colors = [(1-x/max(temp), 1-x/max(temp),0.6) for x in radii]
plt.bar(theta,radii,width=(2*np.pi/N),bottom=0.0,color=colors)
plt.title('一天风级图',x=0.2,fontsize=20)
plt.show()
def calc_corr(a, b):
"""计算相关系数"""
a_avg = sum(a)/len(a)
b_avg = sum(b)/len(b)
cov_ab = sum([(x - a_avg)*(y - b_avg) for x,y in zip(a, b)])
 sq = math.sqrt(sum([(x - a_avg)**2 for x in a])*sum([(x - b_avg)**2 for x in b]))
corr_factor = cov_ab/sq
return corr_factor
def corr_tem_hum(data):
"""温湿度相关性分析"""
tem = data['温度']
hum = data['相对湿度']
plt.scatter(tem,hum,color='blue')
plt.title("温湿度相关性分析图")
plt.xlabel("温度/℃")
plt.ylabel("相对湿度/%")
plt.text(20,40,"相关系数为:"+str(calc_corr(tem,hum)),fontdict={<!-- -->'size':'10','color':'red'})
plt.show()
print("相关系数为:"+str(calc_corr(tem,hum)))
def main():
plt.rcParams['font.sans-serif']=['SimHei'] # 解决中文显示问题
plt.rcParams['axes.unicode_minus'] = False# 解决负号显示问题
data1 = pd.read_csv('weather1.csv',encoding='gb2312')
print(data1)
tem_curve(data1)
hum_curve(data1)
air_curve(data1)
wind_radar(data1)
corr_tem_hum(data1)
if __name__ == '__main__':
main()
data14_analysis.py:
# data14_analysis.py
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import math
def tem_curve(data):
"""温度曲线绘制"""
date = list(data['日期'])
tem_low = list(data['最低气温'])
tem_high = list(data['最高气温'])
for i in range(0,14):
 if math.isnan(tem_low[i]) == True:
tem_low[i] = tem_low[i-1]
 if math.isnan(tem_high[i]) == True:
tem_high[i] = tem_high[i-1]
 tem_high_ave = sum(tem_high)/14 # 求平均高温
 tem_low_ave = sum(tem_low)/14 # 求平均低温

tem_max = max(tem_high)
tem_max_date = tem_high.index(tem_max) # 求最高温度
tem_min = min(tem_low)
tem_min_date = tem_low.index(tem_min) # 求最低温度
x = range(1,15)
plt.figure(1)
plt.plot(x,tem_high,color='red',label='高温')# 画出高温度曲线
plt.scatter(x,tem_high,color='red') # 点出每个时刻的温度点
plt.plot(x,tem_low,color='blue',label='低温')# 画出低温度曲线
plt.scatter(x,tem_low,color='blue') # 点出每个时刻的温度点

plt.plot([1, 15], [tem_high_ave, tem_high_ave], c='black', linestyle='--')# 画出平均温度虚线
plt.plot([1, 15], [tem_low_ave, tem_low_ave], c='black', linestyle='--')# 画出平均温度虚线
plt.legend()
plt.text(tem_max_date+0.15, tem_max+0.15, str(tem_max), ha='center', va='bottom', fontsize=10.5)# 标出最高温度
plt.text(tem_min_date+0.15, tem_min+0.15, str(tem_min), ha='center', va='bottom', fontsize=10.5)# 标出最低温度
plt.xticks(x)
plt.title('未来14天高温低温变化曲线图')
plt.xlabel('未来天数/天')
plt.ylabel('摄氏度/℃')
plt.show()
def change_wind(wind):
"""改变风向"""
for i in range(0,14):
 if wind[i] == "北风":
wind[i] = 90
 elif wind[i] == "南风":
wind[i] = 270
 elif wind[i] == "西风":
wind[i] = 180
 elif wind[i] == "东风":
wind[i] = 360
 elif wind[i] == "东北风":
wind[i] = 45
 elif wind[i] == "西北风":
wind[i] = 135
 elif wind[i] == "西南风":
wind[i] = 225
 elif wind[i] == "东南风":
wind[i] = 315
return wind
def wind_radar(data):
"""风向雷达图"""
wind1 = list(data['风向1'])
wind2 = list(data['风向2'])
wind_speed = list(data['风级'])
wind1 = change_wind(wind1)
wind2 = change_wind(wind2)

degs = np.arange(45,361,45)
temp = []
for deg in degs:
 speed = []
 # 获取 wind_deg 在指定范围的风速平均值数据
 for i in range(0,14):
if wind1[i] == deg:
 speed.append(wind_speed[i])
if wind2[i] == deg:
 speed.append(wind_speed[i])
 if len(speed) == 0:
temp.append(0)
 else:
temp.append(sum(speed)/len(speed))
print(temp)
N = 8
theta = np.arange(0.+np.pi/8,2*np.pi+np.pi/8,2*np.pi/8)
# 数据极径
radii = np.array(temp)
# 绘制极区图坐标系
plt.axes(polar=True)
# 定义每个扇区的RGB值(R,G,B),x越大,对应的颜色越接近蓝色
colors = [(1-x/max(temp), 1-x/max(temp),0.6) for x in radii]
plt.bar(theta,radii,width=(2*np.pi/N),bottom=0.0,color=colors)
plt.title('未来14天风级图',x=0.2,fontsize=20)
plt.show()
def weather_pie(data):
"""绘制天气饼图"""
weather = list(data['天气'])
dic_wea = {<!-- --> }
for i in range(0,14):
 if weather[i] in dic_wea.keys():
dic_wea[weather[i]] += 1
 else:
dic_wea[weather[i]] = 1
print(dic_wea)
explode=[0.01]*len(dic_wea.keys())
color = ['lightskyblue','silver','yellow','salmon','grey','lime','gold','red','green','pink']
plt.pie(dic_wea.values(),explode=explode,labels=dic_wea.keys(),autopct='%1.1f%%',colors=color)
plt.title('未来14天气候分布饼图')
plt.show()
def main():
plt.rcParams['font.sans-serif']=['SimHei'] # 解决中文显示问题
plt.rcParams['axes.unicode_minus'] = False# 解决负号显示问题
data14 = pd.read_csv('weather14.csv',encoding='gb2312')
print(data14)
tem_curve(data14)
wind_radar(data14)
weather_pie(data14)
if __name__ == '__main__':
main()
Nach dem Login kopieren

Das obige ist der detaillierte Inhalt vonPython crawlt Wetterdaten und visuelle Analysen. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Verwandte Etiketten:
Quelle:51cto.com
Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Beliebte Tutorials
Mehr>
Neueste Downloads
Mehr>
Web-Effekte
Quellcode der Website
Website-Materialien
Frontend-Vorlage