Heim Technologie-Peripheriegeräte KI Yann LeCun spricht über Google Research: Zielgerichtete Kommunikation gibt es schon lange, wo ist Ihre Innovation?

Yann LeCun spricht über Google Research: Zielgerichtete Kommunikation gibt es schon lange, wo ist Ihre Innovation?

Apr 12, 2023 pm 06:52 PM
谷歌 ai yann lecun

​Vor ein paar Tagen stellte der akademische Turing-Award-Gewinner Yann LeCun eine Google-Studie in Frage.

Vor einiger Zeit schlug Google AI in seiner neuen Forschung „LocoProp: Enhancing BackProp via Local Loss Optimization“ ein allgemeines hierarchisches Verlustkonstruktions-Framework LocoProp für mehrschichtige neuronale Netze vor, das nur Optimierer erster Ordnung verwendet und gleichzeitig Leistung erzielt nahe an dem von Methoden zweiter Ordnung.

Genauer gesagt stellt sich das Framework ein neuronales Netzwerk als eine modulare Zusammensetzung aus mehreren Schichten vor, wobei jede Schicht ihre eigene Gewichtsregulierungs-, Zielausgabe- und Verlustfunktion verwendet, wodurch letztendlich sowohl Leistung als auch Effizienz erreicht werden.

Google hat die Wirksamkeit seiner Methode experimentell anhand von Benchmark-Modellen und Datensätzen überprüft und so die Lücke zwischen Optimierern erster und zweiter Ordnung verringert. Darüber hinaus gaben Google-Forscher an, dass ihre Methode zur Konstruktion lokaler Verluste das erste Mal ist, dass quadratische Verluste als lokale Verluste verwendet werden.

Yann LeCun spricht über Google Research: Zielgerichtete Kommunikation gibt es schon lange, wo ist Ihre Innovation?

Bildquelle: @Google AI

Zu dieser Recherche von Google haben einige Leute kommentiert, dass sie großartig und interessant ist. Einige Leute äußerten jedoch unterschiedliche Ansichten, darunter der Turing-Preisträger Yann LeCun.

Er glaubt, dass es viele Versionen dessen gibt, was wir heute als Zielobjekte bezeichnen, einige davon stammen aus dem Jahr 1986. Was ist also der Unterschied zwischen Googles LocoProp und ihnen?

Yann LeCun spricht über Google Research: Zielgerichtete Kommunikation gibt es schon lange, wo ist Ihre Innovation?

Bildquelle: @Yann LeCun

In Bezug auf LeCuns Frage stimmte Haohan Wang, der im Begriff ist, Assistenzprofessor an der UIUC zu werden, zu. Er sagte, es sei manchmal überraschend, warum einige Autoren dachten, eine so einfache Idee sei die erste ihrer Art. Vielleicht haben sie etwas anderes gemacht, aber das Werbeteam konnte es kaum erwarten, herauszukommen und alles zu behaupten ...

Yann LeCun spricht über Google Research: Zielgerichtete Kommunikation gibt es schon lange, wo ist Ihre Innovation?

Fotoquelle: @HaohanWang

Einige Leute sind jedoch „nicht kalt“ gegenüber LeCun und denken, dass er Aus Wettbewerbsüberlegungen werfe man Fragen auf und provoziere sogar „Krieg“. LeCun antwortete und behauptete, dass seine Frage nichts mit Konkurrenz zu tun habe, und nannte als Beispiel ehemalige Mitglieder seines Labors wie Marc'Aurelio Ranzato, Karol Gregor, Koray Kavukcuoglu usw., die alle einige Versionen der Zielausbreitung verwendet hätten. und jetzt arbeiten sie alle bei Google DeepMind. Fotoquelle: @Gabriel Jimenez @Yann LeCun Werfen wir zunächst einen Blick darauf, worum es in dieser Google-Studie geht. Gibt es eine herausragende Innovation?

Google LocoProp: Verbesserte Backpropagation mit lokaler VerlustoptimierungYann LeCun spricht über Google Research: Zielgerichtete Kommunikation gibt es schon lange, wo ist Ihre Innovation?

Diese Forschung wurde von drei Forschern von Google durchgeführt: Ehsan Amid, Rohan Anil und Manfred K. Warmuth.

Papieradresse: https://proceedings.mlr.press/v151/amid22a/amid22a.pdfYann LeCun spricht über Google Research: Zielgerichtete Kommunikation gibt es schon lange, wo ist Ihre Innovation?

In diesem Artikel wird davon ausgegangen, dass es zwei Schlüsselfaktoren für den Erfolg tiefer neuronaler Netze (DNN) gibt: Modelldesign und Trainingsdaten. Allerdings diskutieren nur wenige Forscher Optimierungsmethoden zur Aktualisierung von Modellparametern. Unser Training des DNN umfasst die Minimierung der Verlustfunktion, die zur Vorhersage der Differenz zwischen dem wahren Wert und dem vorhergesagten Wert des Modells verwendet wird, und die Verwendung von Backpropagation zur Aktualisierung der Parameter.

Die einfachste Methode zur Gewichtsaktualisierung ist der stochastische Gradientenabstieg, d. h. bei jedem Schritt bewegt sich das Gewicht relativ zum Gradienten in die negative Richtung. Darüber hinaus gibt es erweiterte Optimierungsmethoden wie Momentum Optimizer, AdaGrad usw. Diese Optimierer werden oft als Methoden erster Ordnung bezeichnet, da sie normalerweise nur Informationen aus den Ableitungen erster Ordnung verwenden, um die Aktualisierungsrichtung zu ändern.

Es gibt auch fortgeschrittenere Optimierungsmethoden wie Shampoo, K-FAC usw., die nachweislich die Konvergenz verbessern und die Anzahl der Iterationen reduzieren. Diese Methoden können Änderungen in Gradienten erfassen. Mithilfe dieser zusätzlichen Informationen können Optimierer höherer Ordnung effizientere Aktualisierungsrichtungen für das trainierte Modell ermitteln, indem sie Korrelationen zwischen verschiedenen Parametergruppen berücksichtigen. Der Nachteil besteht darin, dass die Berechnung von Aktualisierungsrichtungen höherer Ordnung rechenintensiver ist als Aktualisierungen erster Ordnung.

Google stellte in dem Artikel ein Framework zum Training von DNN-Modellen vor: LocoProp, das neuronale Netze als modulare Kombinationen von Schichten betrachtet. Im Allgemeinen führt jede Schicht eines neuronalen Netzwerks eine lineare Transformation der Eingabe durch, gefolgt von einer nichtlinearen Aktivierungsfunktion. In dieser Studie wurde jeder Schicht des Netzwerks ein eigener Gewichtsregulator, ein eigenes Ausgabeziel und eine eigene Verlustfunktion zugewiesen. Die Verlustfunktion jeder Schicht ist so konzipiert, dass sie mit der Aktivierungsfunktion dieser Schicht übereinstimmt. Mit dieser Form kann das Training einer bestimmten kleinen Menge lokaler Verluste minimiert werden, indem parallel zwischen Schichten iteriert wird.

Google verwendet diesen Optimierer erster Ordnung für Parameteraktualisierungen und vermeidet so den Rechenaufwand, der für Optimierer höherer Ordnung erforderlich ist.

Untersuchungen zeigen, dass LocoProp Methoden erster Ordnung bei Deep-Autoencoder-Benchmarks übertrifft und eine vergleichbare Leistung wie Optimierer höherer Ordnung wie Shampoo und K-FAC ohne hohen Speicher- und Rechenaufwand erbringt.

Yann LeCun spricht über Google Research: Zielgerichtete Kommunikation gibt es schon lange, wo ist Ihre Innovation?

LocoProp: Verbesserte Backpropagation mit lokaler Verlustoptimierung

Typischerweise werden neuronale Netze als zusammengesetzte Funktionen betrachtet, die die Eingabe jeder Schicht in eine Ausgabedarstellung umwandeln. LocoProp übernimmt diese Perspektive bei der Zerlegung des Netzwerks in Schichten. Anstatt die Gewichtungen einer Schicht zu aktualisieren, um eine Verlustfunktion auf die Ausgabe zu minimieren, wendet LocoProp insbesondere eine vordefinierte lokale Verlustfunktion an, die für jede Schicht spezifisch ist. Für eine bestimmte Schicht wird die Verlustfunktion so gewählt, dass sie mit der Aktivierungsfunktion übereinstimmt. Beispielsweise würde ein Tanh-Verlust für eine Schicht mit Tanh-Aktivierung gewählt. Darüber hinaus stellt der Regularisierungsterm sicher, dass die aktualisierten Gewichte nicht zu weit von ihren aktuellen Werten abweichen.

Yann LeCun spricht über Google Research: Zielgerichtete Kommunikation gibt es schon lange, wo ist Ihre Innovation?

Ähnlich wie bei der Backpropagation wendet LocoProp einen Vorwärtsdurchlauf an, um Aktivierungen zu berechnen. Beim Rückwärtsdurchlauf legt LocoProp Ziele für Neuronen in jeder Schicht fest. Schließlich zerlegt LocoProp das Modelltraining in unabhängige Probleme über Schichten hinweg, wobei mehrere lokale Aktualisierungen parallel auf die Gewichte jeder Schicht angewendet werden können.

Google hat Experimente mit Deep-Autoencoder-Modellen durchgeführt, einem gängigen Maßstab für die Bewertung der Leistung von Optimierungsalgorithmen. Sie führten umfangreiche Optimierungen an mehreren häufig verwendeten Optimierern erster Ordnung durch, darunter SGD, SGD mit Momentum, AdaGrad, RMSProp, Adam und Optimierern höherer Ordnung, einschließlich Shampoo, K-FAC, und verglichen die Ergebnisse mit LocoProp. Die Ergebnisse zeigen, dass die LocoProp-Methode eine deutlich bessere Leistung als Optimierer erster Ordnung erbringt und mit Optimierern höherer Ordnung vergleichbar ist, während sie bei der Ausführung auf einer einzelnen GPU deutlich schneller ist.

Yann LeCun spricht über Google Research: Zielgerichtete Kommunikation gibt es schon lange, wo ist Ihre Innovation?

Das obige ist der detaillierte Inhalt vonYann LeCun spricht über Google Research: Zielgerichtete Kommunikation gibt es schon lange, wo ist Ihre Innovation?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

R.E.P.O. Energiekristalle erklärten und was sie tun (gelber Kristall)
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Beste grafische Einstellungen
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. So reparieren Sie Audio, wenn Sie niemanden hören können
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Welche Methode wird verwendet, um Strings in Objekte in Vue.js umzuwandeln? Welche Methode wird verwendet, um Strings in Objekte in Vue.js umzuwandeln? Apr 07, 2025 pm 09:39 PM

Bei der Konvertierung von Zeichenfolgen in Objekte in Vue.js wird JSON.Parse () für Standard -JSON -Zeichenfolgen bevorzugt. Bei nicht standardmäßigen JSON-Zeichenfolgen kann die Zeichenfolge durch Verwendung regelmäßiger Ausdrücke verarbeitet und Methoden gemäß dem Format oder dekodierten URL-kodiert reduziert werden. Wählen Sie die entsprechende Methode gemäß dem String -Format aus und achten Sie auf Sicherheits- und Codierungsprobleme, um Fehler zu vermeiden.

Remote Senior Backend Engineers (Plattformen) benötigen Kreise Remote Senior Backend Engineers (Plattformen) benötigen Kreise Apr 08, 2025 pm 12:27 PM

Remote Senior Backend Engineer Job Vacant Company: Circle Standort: Remote-Büro-Jobtyp: Vollzeitgehalt: 130.000 bis 140.000 US-Dollar Stellenbeschreibung Nehmen Sie an der Forschung und Entwicklung von Mobilfunkanwendungen und öffentlichen API-bezogenen Funktionen, die den gesamten Lebenszyklus der Softwareentwicklung abdecken. Die Hauptaufgaben erledigen die Entwicklungsarbeit unabhängig von RubyonRails und arbeiten mit dem Front-End-Team von React/Redux/Relay zusammen. Erstellen Sie die Kernfunktionalität und -verbesserungen für Webanwendungen und arbeiten Sie eng mit Designer und Führung während des gesamten funktionalen Designprozesses zusammen. Fördern Sie positive Entwicklungsprozesse und priorisieren Sie die Iterationsgeschwindigkeit. Erfordert mehr als 6 Jahre komplexes Backend für Webanwendungen

VUE.JS Wie kann man ein Array von String -Typ in ein Array von Objekten umwandeln? VUE.JS Wie kann man ein Array von String -Typ in ein Array von Objekten umwandeln? Apr 07, 2025 pm 09:36 PM

Zusammenfassung: Es gibt die folgenden Methoden zum Umwandeln von VUE.JS -String -Arrays in Objektarrays: Grundlegende Methode: Verwenden Sie die Kartenfunktion, um regelmäßige formatierte Daten zu entsprechen. Erweitertes Gameplay: Die Verwendung regulärer Ausdrücke kann komplexe Formate ausführen, müssen jedoch sorgfältig geschrieben und berücksichtigt werden. Leistungsoptimierung: In Betracht ziehen die große Datenmenge, asynchrone Operationen oder effiziente Datenverarbeitungsbibliotheken können verwendet werden. Best Practice: Clear Code -Stil, verwenden Sie sinnvolle variable Namen und Kommentare, um den Code präzise zu halten.

So verwenden Sie MySQL nach der Installation So verwenden Sie MySQL nach der Installation Apr 08, 2025 am 11:48 AM

Der Artikel führt den Betrieb der MySQL -Datenbank vor. Zunächst müssen Sie einen MySQL -Client wie MySQLworkBench oder Befehlszeilen -Client installieren. 1. Verwenden Sie den Befehl mySQL-uroot-P, um eine Verbindung zum Server herzustellen und sich mit dem Stammkonto-Passwort anzumelden. 2. Verwenden Sie die Erstellung von Createdatabase, um eine Datenbank zu erstellen, und verwenden Sie eine Datenbank aus. 3.. Verwenden Sie CreateTable, um eine Tabelle zu erstellen, Felder und Datentypen zu definieren. 4. Verwenden Sie InsertInto, um Daten einzulegen, Daten abzufragen, Daten nach Aktualisierung zu aktualisieren und Daten nach Löschen zu löschen. Nur indem Sie diese Schritte beherrschen, lernen, mit gemeinsamen Problemen umzugehen und die Datenbankleistung zu optimieren, können Sie MySQL effizient verwenden.

Laravels Geospatial: Optimierung interaktiver Karten und großen Datenmengen Laravels Geospatial: Optimierung interaktiver Karten und großen Datenmengen Apr 08, 2025 pm 12:24 PM

Verarbeiten Sie 7 Millionen Aufzeichnungen effizient und erstellen Sie interaktive Karten mit Geospatial -Technologie. In diesem Artikel wird untersucht, wie über 7 Millionen Datensätze mithilfe von Laravel und MySQL effizient verarbeitet und in interaktive Kartenvisualisierungen umgewandelt werden können. Erstes Herausforderungsprojektanforderungen: Mit 7 Millionen Datensätzen in der MySQL -Datenbank wertvolle Erkenntnisse extrahieren. Viele Menschen erwägen zunächst Programmiersprachen, aber ignorieren die Datenbank selbst: Kann sie den Anforderungen erfüllen? Ist Datenmigration oder strukturelle Anpassung erforderlich? Kann MySQL einer so großen Datenbelastung standhalten? Voranalyse: Schlüsselfilter und Eigenschaften müssen identifiziert werden. Nach der Analyse wurde festgestellt, dass nur wenige Attribute mit der Lösung zusammenhängen. Wir haben die Machbarkeit des Filters überprüft und einige Einschränkungen festgelegt, um die Suche zu optimieren. Kartensuche basierend auf der Stadt

Vue- und Element-UI-Kaskaden-Dropdown-Box V-Model-Bindung Vue- und Element-UI-Kaskaden-Dropdown-Box V-Model-Bindung Apr 07, 2025 pm 08:06 PM

Vue- und Element-UI-kaskadierte Dropdown-Boxen V-Model-Bindung gemeinsame Grubenpunkte: V-Model bindet ein Array, das die ausgewählten Werte auf jeder Ebene des kaskadierten Auswahlfelds darstellt, nicht auf einer Zeichenfolge; Der Anfangswert von ausgewählten Optionen muss ein leeres Array sein, nicht null oder undefiniert. Die dynamische Belastung von Daten erfordert die Verwendung asynchroner Programmierkenntnisse, um Datenaktualisierungen asynchron zu verarbeiten. Für riesige Datensätze sollten Leistungsoptimierungstechniken wie virtuelles Scrollen und fauler Laden in Betracht gezogen werden.

So optimieren Sie die Datenbankleistung nach der MySQL -Installation So optimieren Sie die Datenbankleistung nach der MySQL -Installation Apr 08, 2025 am 11:36 AM

Die MySQL -Leistungsoptimierung muss von drei Aspekten beginnen: Installationskonfiguration, Indexierung und Abfrageoptimierung, Überwachung und Abstimmung. 1. Nach der Installation müssen Sie die my.cnf -Datei entsprechend der Serverkonfiguration anpassen, z. 2. Erstellen Sie einen geeigneten Index, um übermäßige Indizes zu vermeiden und Abfrageanweisungen zu optimieren, z. B. den Befehl Erklärung zur Analyse des Ausführungsplans; 3. Verwenden Sie das eigene Überwachungstool von MySQL (ShowProcessList, Showstatus), um die Datenbankgesundheit zu überwachen und die Datenbank regelmäßig zu sichern und zu organisieren. Nur durch kontinuierliche Optimierung dieser Schritte kann die Leistung der MySQL -Datenbank verbessert werden.

Wie man MySQL löst, kann nicht gestartet werden Wie man MySQL löst, kann nicht gestartet werden Apr 08, 2025 pm 02:21 PM

Es gibt viele Gründe, warum MySQL Startup fehlschlägt und durch Überprüfung des Fehlerprotokolls diagnostiziert werden kann. Zu den allgemeinen Ursachen gehören Portkonflikte (prüfen Portbelegung und Änderung der Konfiguration), Berechtigungsprobleme (Überprüfen Sie den Dienst Ausführen von Benutzerberechtigungen), Konfigurationsdateifehler (Überprüfung der Parametereinstellungen), Datenverzeichniskorruption (Wiederherstellung von Daten oder Wiederaufbautabellenraum), InnoDB-Tabellenraumprobleme (prüfen IBDATA1-Dateien), Plug-in-Ladeversagen (Überprüfen Sie Fehlerprotokolle). Wenn Sie Probleme lösen, sollten Sie sie anhand des Fehlerprotokolls analysieren, die Hauptursache des Problems finden und die Gewohnheit entwickeln, Daten regelmäßig zu unterstützen, um Probleme zu verhindern und zu lösen.

See all articles