Inhaltsverzeichnis
Modellbasiertes RL hat das Potenzial, eine hohe Stichprobeneffizienz zu erreichen, indem gleichzeitig ein Weltmodell erlernt und der synthetische Einsatz für Planung und Richtlinienverbesserungen verwendet wird.
Heim Technologie-Peripheriegeräte KI Meta führt das MoDem-Weltmodell ein: Lösung dreier großer Herausforderungen im visuellen Bereich, weitergeleitet von LeCun

Meta führt das MoDem-Weltmodell ein: Lösung dreier großer Herausforderungen im visuellen Bereich, weitergeleitet von LeCun

Apr 12, 2023 pm 08:22 PM
强化学习 模型

Am 27. Dezember ist MetaAI für A

Meta führt das MoDem-Weltmodell ein: Lösung dreier großer Herausforderungen im visuellen Bereich, weitergeleitet von LeCun

im Bereich Vision und Reinforcement Learning verantwortlich. Am Abend des 27. hat die Anzahl der Lesevorgänge dieses Tweets 73,9.000 erreicht.

Meta führt das MoDem-Weltmodell ein: Lösung dreier großer Herausforderungen im visuellen Bereich, weitergeleitet von LeCun

Er sagte, dass MoDem mit nur 5 Demonstrationen herausfordernde visuelle Bewegungssteuerungsaufgaben mit spärlichen Belohnungen und hochdimensionalen Aktionsräumen in 100.000 Interaktionsschritten lösen kann und damit bestehende Methoden weit übertrifft .

Wie gut ist es?

Sie fanden heraus, dass die Erfolgsquote von MoDem bei der Erledigung von Aufgaben mit geringer Belohnung 150 %–250 % höher war als bei früheren Methoden in Regimen mit wenig Daten.

Meta führt das MoDem-Weltmodell ein: Lösung dreier großer Herausforderungen im visuellen Bereich, weitergeleitet von LeCun

Lecun leitete diese Forschung ebenfalls weiter und sagte, dass die Modellarchitektur von MoDem der von JEPA ähnelt und Vorhersagen im Darstellungsraum treffen kann, ohne dass ein Decoder erforderlich ist.

Meta führt das MoDem-Weltmodell ein: Lösung dreier großer Herausforderungen im visuellen Bereich, weitergeleitet von LeCun

Der Herausgeber hat den Link unten gesetzt, interessierte Freunde können einen Blick darauf werfen~

Meta führt das MoDem-Weltmodell ein: Lösung dreier großer Herausforderungen im visuellen Bereich, weitergeleitet von LeCun

Papierlink: https://arxiv.org/abs/2212.05698

.

Github-Link: https://github.com/facebookresearch/modem.

Modellbasiertes RL hat das Potenzial, eine hohe Stichprobeneffizienz zu erreichen, indem gleichzeitig ein Weltmodell erlernt und der synthetische Einsatz für Planung und Richtlinienverbesserungen verwendet wird.

In der Praxis wird das effiziente Lernen von Proben in modellbasierter RL jedoch durch Explorationsherausforderungen behindert. Diese Forschung löst genau diese Hauptherausforderungen.

Zunächst löst MoDem drei Hauptherausforderungen im Bereich des visuellen Verstärkungslernens/-kontrolle durch die Verwendung von Weltmodell, Nachahmung + RL bzw. selbstüberwachtem visuellem Vortraining:

Große Stichprobenkomplexität)

Erkundung im hochdimensionalen Zustands- und Aktionsraum
  • Simultanes Lernen visueller Darstellungen und Verhaltensweisen
  • Diesmal ähnelt die Modellarchitektur der JEPA von Yann LeCun und erfordert keinen Decoder.

Meta führt das MoDem-Weltmodell ein: Lösung dreier großer Herausforderungen im visuellen Bereich, weitergeleitet von LeCunAravind Rajeswaran, der Autor, sagte, dass im Vergleich zu Dreamer, das einen Decoder für die Vorhersage auf Pixelebene erfordert und über eine umfangreiche Architektur verfügt, die decoderlose Architektur das direkte Einfügen von mit SSL vorab trainierten visuellen Darstellungen unterstützen kann.

Darüber hinaus schlugen sie basierend auf IL+RL einen dreistufigen Algorithmus vor:

  • BC-Vortrainingsstrategie
  • Vorabtraining des Weltmodells mithilfe eines Seed-Datensatzes mit Demonstrationen und Erkundungen. Diese Phase ist wichtig für die allgemeine Stabilität und Effizienz
  • Feinabstimmung des Weltmodells durch Online-Interaktion

Meta führt das MoDem-Weltmodell ein: Lösung dreier großer Herausforderungen im visuellen Bereich, weitergeleitet von LeCun

Die Ergebnisse zeigen, dass der generierte Algorithmus SOTA-Ergebnisse (State-Of-The-Art-Ergebnis) in 21 schwierigen visuellen Bewegungssteuerungsaufgaben erzielte, darunter Adroit Dexterous Operation, MetaWorld und DeepMind Control Suites.

Aus Datensicht schneidet MoDem bei verschiedenen Aufgaben weitaus besser ab als andere Modelle, und die Ergebnisse sind 150 bis 250 % höher als bei der vorherigen SOTA-Methode. Die roten Linien zeigen die Leistung von MoDem bei verschiedenen Aufgaben an Nutzen vorab trainierter visueller Darstellungen.

Meta führt das MoDem-Weltmodell ein: Lösung dreier großer Herausforderungen im visuellen Bereich, weitergeleitet von LeCunSchließlich ist die Verwendung der eingefrorenen R3M-Funktionalität dem direkten E2E-Ansatz weit überlegen. Das ist spannend und zeigt, dass visuelles Vortraining aus Videos Weltmodelle unterstützen kann.

Aber der E2E mit starken Daten im August konkurriert mit dem eingefrorenen R3M, das können wir mit Vortraining besser machen.

Das obige ist der detaillierte Inhalt vonMeta führt das MoDem-Weltmodell ein: Lösung dreier großer Herausforderungen im visuellen Bereich, weitergeleitet von LeCun. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

R.E.P.O. Energiekristalle erklärten und was sie tun (gelber Kristall)
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Beste grafische Einstellungen
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. So reparieren Sie Audio, wenn Sie niemanden hören können
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Wie man alles in Myrise freischaltet
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Das weltweit leistungsstärkste Open-Source-MoE-Modell ist da, mit chinesischen Fähigkeiten, die mit GPT-4 vergleichbar sind, und der Preis beträgt nur fast ein Prozent von GPT-4-Turbo Das weltweit leistungsstärkste Open-Source-MoE-Modell ist da, mit chinesischen Fähigkeiten, die mit GPT-4 vergleichbar sind, und der Preis beträgt nur fast ein Prozent von GPT-4-Turbo May 07, 2024 pm 04:13 PM

Stellen Sie sich ein Modell der künstlichen Intelligenz vor, das nicht nur die Fähigkeit besitzt, die traditionelle Datenverarbeitung zu übertreffen, sondern auch eine effizientere Leistung zu geringeren Kosten erzielt. Dies ist keine Science-Fiction, DeepSeek-V2[1], das weltweit leistungsstärkste Open-Source-MoE-Modell, ist da. DeepSeek-V2 ist ein leistungsstarkes MoE-Sprachmodell (Mix of Experts) mit den Merkmalen eines wirtschaftlichen Trainings und einer effizienten Inferenz. Es besteht aus 236B Parametern, von denen 21B zur Aktivierung jedes Markers verwendet werden. Im Vergleich zu DeepSeek67B bietet DeepSeek-V2 eine stärkere Leistung, spart gleichzeitig 42,5 % der Trainingskosten, reduziert den KV-Cache um 93,3 % und erhöht den maximalen Generierungsdurchsatz auf das 5,76-fache. DeepSeek ist ein Unternehmen, das sich mit allgemeiner künstlicher Intelligenz beschäftigt

KI untergräbt die mathematische Forschung! Der Gewinner der Fields-Medaille und der chinesisch-amerikanische Mathematiker führten 11 hochrangige Arbeiten an | Gefällt mir bei Terence Tao KI untergräbt die mathematische Forschung! Der Gewinner der Fields-Medaille und der chinesisch-amerikanische Mathematiker führten 11 hochrangige Arbeiten an | Gefällt mir bei Terence Tao Apr 09, 2024 am 11:52 AM

KI verändert tatsächlich die Mathematik. Vor kurzem hat Tao Zhexuan, der diesem Thema große Aufmerksamkeit gewidmet hat, die neueste Ausgabe des „Bulletin of the American Mathematical Society“ (Bulletin der American Mathematical Society) weitergeleitet. Zum Thema „Werden Maschinen die Mathematik verändern?“ äußerten viele Mathematiker ihre Meinung. Der gesamte Prozess war voller Funken, knallhart und aufregend. Der Autor verfügt über eine starke Besetzung, darunter der Fields-Medaillengewinner Akshay Venkatesh, der chinesische Mathematiker Zheng Lejun, der NYU-Informatiker Ernest Davis und viele andere bekannte Wissenschaftler der Branche. Die Welt der KI hat sich dramatisch verändert. Viele dieser Artikel wurden vor einem Jahr eingereicht.

Hallo, elektrischer Atlas! Der Boston Dynamics-Roboter erwacht wieder zum Leben, seltsame 180-Grad-Bewegungen machen Musk Angst Hallo, elektrischer Atlas! Der Boston Dynamics-Roboter erwacht wieder zum Leben, seltsame 180-Grad-Bewegungen machen Musk Angst Apr 18, 2024 pm 07:58 PM

Boston Dynamics Atlas tritt offiziell in die Ära der Elektroroboter ein! Gestern hat sich der hydraulische Atlas einfach „unter Tränen“ von der Bühne der Geschichte zurückgezogen. Heute gab Boston Dynamics bekannt, dass der elektrische Atlas im Einsatz ist. Es scheint, dass Boston Dynamics im Bereich kommerzieller humanoider Roboter entschlossen ist, mit Tesla zu konkurrieren. Nach der Veröffentlichung des neuen Videos wurde es innerhalb von nur zehn Stunden bereits von mehr als einer Million Menschen angesehen. Die alten Leute gehen und neue Rollen entstehen. Das ist eine historische Notwendigkeit. Es besteht kein Zweifel, dass dieses Jahr das explosive Jahr der humanoiden Roboter ist. Netizens kommentierten: Die Weiterentwicklung der Roboter hat dazu geführt, dass die diesjährige Eröffnungsfeier wie Menschen aussieht, und der Freiheitsgrad ist weitaus größer als der von Menschen. Aber ist das wirklich kein Horrorfilm? Zu Beginn des Videos liegt Atlas ruhig auf dem Boden, scheinbar auf dem Rücken. Was folgt, ist atemberaubend

KAN, das MLP ersetzt, wurde durch Open-Source-Projekte auf Faltung erweitert KAN, das MLP ersetzt, wurde durch Open-Source-Projekte auf Faltung erweitert Jun 01, 2024 pm 10:03 PM

Anfang dieses Monats schlugen Forscher des MIT und anderer Institutionen eine vielversprechende Alternative zu MLP vor – KAN. KAN übertrifft MLP in Bezug auf Genauigkeit und Interpretierbarkeit. Und es kann MLP, das mit einer größeren Anzahl von Parametern ausgeführt wird, mit einer sehr kleinen Anzahl von Parametern übertreffen. Beispielsweise gaben die Autoren an, dass sie KAN nutzten, um die Ergebnisse von DeepMind mit einem kleineren Netzwerk und einem höheren Automatisierungsgrad zu reproduzieren. Konkret verfügt DeepMinds MLP über etwa 300.000 Parameter, während KAN nur etwa 200 Parameter hat. KAN hat eine starke mathematische Grundlage wie MLP und basiert auf dem universellen Approximationssatz, während KAN auf dem Kolmogorov-Arnold-Darstellungssatz basiert. Wie in der folgenden Abbildung gezeigt, hat KAN

Google ist begeistert: JAX-Leistung übertrifft Pytorch und TensorFlow! Es könnte die schnellste Wahl für das GPU-Inferenztraining werden Google ist begeistert: JAX-Leistung übertrifft Pytorch und TensorFlow! Es könnte die schnellste Wahl für das GPU-Inferenztraining werden Apr 01, 2024 pm 07:46 PM

Die von Google geförderte Leistung von JAX hat in jüngsten Benchmark-Tests die von Pytorch und TensorFlow übertroffen und belegt bei 7 Indikatoren den ersten Platz. Und der Test wurde nicht auf der TPU mit der besten JAX-Leistung durchgeführt. Obwohl unter Entwicklern Pytorch immer noch beliebter ist als Tensorflow. Aber in Zukunft werden möglicherweise mehr große Modelle auf Basis der JAX-Plattform trainiert und ausgeführt. Modelle Kürzlich hat das Keras-Team drei Backends (TensorFlow, JAX, PyTorch) mit der nativen PyTorch-Implementierung und Keras2 mit TensorFlow verglichen. Zunächst wählen sie eine Reihe von Mainstream-Inhalten aus

Tesla-Roboter arbeiten in Fabriken, Musk: Der Freiheitsgrad der Hände wird dieses Jahr 22 erreichen! Tesla-Roboter arbeiten in Fabriken, Musk: Der Freiheitsgrad der Hände wird dieses Jahr 22 erreichen! May 06, 2024 pm 04:13 PM

Das neueste Video von Teslas Roboter Optimus ist veröffentlicht und er kann bereits in der Fabrik arbeiten. Bei normaler Geschwindigkeit sortiert es Batterien (Teslas 4680-Batterien) so: Der Beamte hat auch veröffentlicht, wie es bei 20-facher Geschwindigkeit aussieht – auf einer kleinen „Workstation“, pflücken und pflücken und pflücken: Dieses Mal wird es freigegeben. Eines der Highlights Der Vorteil des Videos besteht darin, dass Optimus diese Arbeit in der Fabrik völlig autonom und ohne menschliches Eingreifen während des gesamten Prozesses erledigt. Und aus Sicht von Optimus kann es auch die krumme Batterie aufnehmen und platzieren, wobei der Schwerpunkt auf der automatischen Fehlerkorrektur liegt: In Bezug auf die Hand von Optimus gab der NVIDIA-Wissenschaftler Jim Fan eine hohe Bewertung ab: Die Hand von Optimus ist der fünffingrige Roboter der Welt am geschicktesten. Seine Hände sind nicht nur taktil

FisheyeDetNet: der erste Zielerkennungsalgorithmus basierend auf einer Fischaugenkamera FisheyeDetNet: der erste Zielerkennungsalgorithmus basierend auf einer Fischaugenkamera Apr 26, 2024 am 11:37 AM

Die Zielerkennung ist ein relativ ausgereiftes Problem in autonomen Fahrsystemen, wobei die Fußgängererkennung einer der ersten Algorithmen ist, die eingesetzt werden. In den meisten Arbeiten wurde eine sehr umfassende Recherche durchgeführt. Die Entfernungswahrnehmung mithilfe von Fischaugenkameras für die Rundumsicht ist jedoch relativ wenig untersucht. Aufgrund der großen radialen Verzerrung ist es schwierig, die standardmäßige Bounding-Box-Darstellung in Fischaugenkameras zu implementieren. Um die obige Beschreibung zu vereinfachen, untersuchen wir erweiterte Begrenzungsrahmen-, Ellipsen- und allgemeine Polygondesigns in Polar-/Winkeldarstellungen und definieren eine mIOU-Metrik für die Instanzsegmentierung, um diese Darstellungen zu analysieren. Das vorgeschlagene Modell „fisheyeDetNet“ mit polygonaler Form übertrifft andere Modelle und erreicht gleichzeitig 49,5 % mAP auf dem Valeo-Fisheye-Kameradatensatz für autonomes Fahren

DualBEV: BEVFormer und BEVDet4D deutlich übertreffen, öffnen Sie das Buch! DualBEV: BEVFormer und BEVDet4D deutlich übertreffen, öffnen Sie das Buch! Mar 21, 2024 pm 05:21 PM

In diesem Artikel wird das Problem der genauen Erkennung von Objekten aus verschiedenen Blickwinkeln (z. B. Perspektive und Vogelperspektive) beim autonomen Fahren untersucht, insbesondere wie die Transformation von Merkmalen aus der Perspektive (PV) in den Raum aus der Vogelperspektive (BEV) effektiv ist implementiert über das Modul Visual Transformation (VT). Bestehende Methoden lassen sich grob in zwei Strategien unterteilen: 2D-zu-3D- und 3D-zu-2D-Konvertierung. 2D-zu-3D-Methoden verbessern dichte 2D-Merkmale durch die Vorhersage von Tiefenwahrscheinlichkeiten, aber die inhärente Unsicherheit von Tiefenvorhersagen, insbesondere in entfernten Regionen, kann zu Ungenauigkeiten führen. Während 3D-zu-2D-Methoden normalerweise 3D-Abfragen verwenden, um 2D-Features abzutasten und die Aufmerksamkeitsgewichte der Korrespondenz zwischen 3D- und 2D-Features über einen Transformer zu lernen, erhöht sich die Rechen- und Bereitstellungszeit.

See all articles