Inhaltsverzeichnis
1. Einführung in den Hintergrund
2. Kernprobleme
3. MATXScript
4. Ein kleiner Test " >4. Ein kleiner Test
5. Multimodaler Fall
VII. Weitere Informationen" >VII. Weitere Informationen
Heim Technologie-Peripheriegeräte KI Bytedance-Modell groß angelegter Einsatz im tatsächlichen Kampf

Bytedance-Modell groß angelegter Einsatz im tatsächlichen Kampf

Apr 12, 2023 pm 08:31 PM
深度学习 字节跳动

Bytedance-Modell groß angelegter Einsatz im tatsächlichen Kampf

1. Einführung in den Hintergrund

In ByteDance florieren Anwendungen, die auf Deep Learning basieren, während sich Ingenieure zunächst auf die Konsistenz und Leistung von Online-Diensten konzentrieren Normalerweise ist eine Arbeitsteilung zwischen Algorithmenexperten und Ingenieurexperten erforderlich. Dieser Modus ist mit relativ hohen Kosten verbunden, z. B. für die Fehlerbehebung und Überprüfung.

Mit der Popularität des PyTorch/TensorFlow-Frameworks wurden Deep-Learning-Modelltraining und Online-Inferenz vereinheitlicht. Entwickler müssen nur noch auf die spezifische Algorithmuslogik achten und die Python-API des Frameworks aufrufen, um den Trainingsüberprüfungsprozess abzuschließen Das Modell kann problemlos sequenziell exportiert werden, und die Argumentationsarbeit wird durch eine einheitliche leistungsstarke C++-Engine vervollständigt. Verbesserte Entwicklererfahrung von der Schulung bis zur Bereitstellung.

Allerdings verfügt ein vollständiger Dienst normalerweise noch über eine Menge Geschäftslogik wie Vorverarbeitung/Nachverarbeitung. Diese Art von Logik verarbeitet normalerweise verschiedene Eingaben in Tensoren und gibt sie dann in den Ausgabetensor des Modells ein im Zielformat verarbeitet wird, sind einige typische Szenarien wie folgt:

  • Bert
  • Resnet

Bytedance-Modell groß angelegter Einsatz im tatsächlichen Kampf

Bytedance-Modell groß angelegter Einsatz im tatsächlichen Kampf

Unser Ziel ist es, automatisierte und einheitliche Trainings- und Inferenzlösungen für den oben genannten End-to-End-Prozess bereitzustellen , und erleichtern Sie die manuelle Entwicklung des Inferenzprozesses, Ausrichtungsunterschiede und eine Reihe anderer Probleme, um eine umfassende, einheitliche Bereitstellungslösung zu erreichen.

2. Kernprobleme

PyTorch/TensorFlow und andere Frameworks haben das Problem des einheitlichen Modelltrainings/der Inferenz relativ gelöst, sodass die Modellberechnung selbst nicht das Problem der Integration von Training und Inferenz aufweist (die Optimierung der Operatorleistung liegt nicht im Rahmen). dieser Diskussion).

Das zu lösende Kernproblem besteht darin, dass Vor- und Nachverarbeitung eine leistungsstarke Trainings- und Push-Integrationslösung bereitstellen müssen.

Für diese Art von Logik stellt TensorFlow 2.x tf.function bereit (noch nicht vollständig) und PyTorch stellt TorchScript bereit, das ausnahmslos eine Teilmenge der nativen Python-Syntax auswählt. Aber auch wenn es so leistungsstark ist, gibt es immer noch Probleme, die nicht ignoriert werden können:

  • Leistung: Der größte Teil dieser Lösung basiert auf der Implementierung virtueller Maschinen. Die virtuelle Maschinenlösung ist flexibel und sehr kontrollierbar, die meisten virtuellen Maschinen basieren jedoch auf Deep Learning Frameworks haben normalerweise keine ausreichend gute Leistung. Als Ergänzung wurde das Framework in den Anfängen für Tensor-Computing entwickelt. Die Kosten für jeden Operator beim Array-Computing sind sehr hoch, und die Kosten für den Versand und die Planung virtueller Maschinen können ignoriert werden. Allerdings ist der Mehraufwand bei der Portierung auf die Programmiersprachenprogrammierung schwer zu ignorieren, und das Schreiben von zu viel Code führt zu einem Leistungsengpass. Laut Tests beträgt die Leistung des TorchScript-Interpreters nur etwa 1/5 der von Python, und die Leistung von tf.function ist sogar noch schlechter.
  • Unvollständige Funktionen: Tatsächlich können wir bei der Anwendung auf reale Szenarien immer noch viele wichtige Funktionen finden, die tf.function/TorchScript nicht unterstützt. Beispielsweise können benutzerdefinierte Ressourcen nicht gepackt werden und können nur integrierte Zeichenfolgen serialisieren Nur bei der Byte-Verarbeitung führt Unicode wie Chinesisch zu Diff; der Container muss isomorph sein und unterstützt keine benutzerdefinierten Typen usw.

Darüber hinaus gibt es viele nicht tiefe Lernaufgaben, wie zum Beispiel noch viele Nicht-Deep-Learning-Aufgaben in der Verarbeitung natürlicher Sprache Anwendungen oder Teilaufgaben des Deep Learning, wie z. B. Sequenzannotation, Sprachmodelldekodierung, künstliche Merkmalskonstruktion von Baummodellen usw. Diese verfügen normalerweise über flexiblere Merkmalsparadigmen, verfügen aber gleichzeitig über flexiblere Merkmalsparadigmen Es gibt noch viel Entwicklungs- und Korrektheitsüberprüfungsarbeit.

Um die oben genannten Probleme zu lösen, haben wir eine kompilierungsbasierte Vorverarbeitungslösung entwickelt: MATXScript!

3. MATXScript

Bei der Entwicklung von Deep-Learning-Algorithmen verwenden Entwickler normalerweise Python für schnelle Iterationen und Experimente, während C++ zur Entwicklung leistungsstarker Online-Dienste verwendet wird, bei denen die Korrektheitsüberprüfung und die Dienstentwicklung zu einer größeren Belastung werden!

MatxScript (https://github.com/bytedance/matxscript) ist ein AOT-Compiler für die Python-Subsprache, der Python automatisch in C++ übersetzen und Paketierungs- und Veröffentlichungsfunktionen mit einem Klick bereitstellen kann. Durch die Verwendung von MATXScript können Entwickler Modelle schnell iterieren und gleichzeitig leistungsstarke Dienste zu geringeren Kosten bereitstellen.

Die Kernarchitektur ist wie folgt:

Bytedance-Modell groß angelegter Einsatz im tatsächlichen Kampf

  • Die unterste Ebene ist eine reine C++/CUDA-Basisbibliothek, die von leistungsstarken Operator-Experten entwickelt wurde.
  • Zusätzlich zur Basisbibliothek ist die Python-Bibliothek gemäß der Konvention gekapselt und kann im Trainingsprozess verwendet werden.
  • Wenn Rückschlüsse erforderlich sind, kann MATXScript verwendet werden, um den Python-Code in den entsprechenden C++-Code zu übersetzen, ihn in eine dynamische Linkbibliothek zu kompilieren, das Modell und andere abhängige Ressourcen hinzuzufügen und ihn zusammen zu verpacken und zu veröffentlichen.

Unter diesen ist die Rolle des Compilers sehr wichtig, und sein Kernprozess ist wie folgt:

Bytedance-Modell groß angelegter Einsatz im tatsächlichen Kampf

Durch den obigen Prozess kann der vom Benutzer geschriebene Vorverarbeitungscode in einem JitOp in der Pipeline kompiliert werden. Um die Vor- und Nachbearbeitung mit dem Modell zu verknüpfen, haben wir außerdem ein Tracing-System entwickelt (das Interface-Design bezieht sich auf PyTorch), mit folgender Architektur:

Bytedance-Modell groß angelegter Einsatz im tatsächlichen Kampf

Basierend auf MATXScript können wir dasselbe verwenden Codesatz für Training und Inferenz, was die Kosten für die Modellbereitstellung erheblich senkt. Gleichzeitig sind Architektur und Algorithmus entkoppelt, und Algorithmenstudenten können sich vollständig auf die Compilerentwicklung und Laufzeitoptimierung konzentrieren. Diese Lösung wurde durch eine groß angelegte Bereitstellung überprüft.

4. Ein kleiner Test

Hier nehmen wir die einfachste englische Textvorverarbeitung als Beispiel, um zu zeigen, wie man MATXScript verwendet.

Ziel: Einen englischen Text in Indizes umwandeln

  1. Eine grundlegende Wörterbuchsuchlogik schreiben
class Text2Ids:
def __init__(self) -> None:
self.table: Dict[str, int] = {
"hello": 0,
"world": 1,
"[UNK]": 2,
}

def lookup(self, word: str)
return self.table.get(word, 2)

def__call__ (self, words: List[str])
return [self.lookup(w) for w in words]
Nach dem Login kopieren
  1. Pipeline schreiben
import matx

class WorkFlow:
def __init__(self):
# 此处会进行代码编译,Python 代码自动编译封装为 Callable 对象
self.text2ids = matx.script(Text2Ids)()

def process(self, texts):
ids = self.text2ids(texts)
return ids

# test
handler = WorkFlow()
print(handler.process("hello world unknown"))
# output: [0, 1, 2]
Nach dem Login kopieren
  1. Trace-Export auf die Festplatte
# dump
mod = matx.trace(handler.process, "hello world")
print(mod.run({"texts": "hello world"}))
mod.save('./my_dir')
# load
mod = matx.load('./my_dir', -1)
print(mod.run({"texts": "hello world"}))
Nach dem Login kopieren
  1. C++ laden
#include <string>
#include <vector>
#include <map>
#include <iostream>
#include <matxscript/pipeline/tx_session.h>
using namespace ::matxscript::runtime;
int main()
{
// test case
std::unordered_map<std::string, RTValue> feed_dict;
feed_dict.emplace("texts", Unicode(U"hello world"));
std::vector<std::pair<std::string, RTValue>> result;
const char* module_path = "./my_dir";
const char* module_name = "model.spec.json";
{
// -1 mean cpu
auto sess = TXSession::Load(module_path, module_name, -1);
auto result = sess->Run(feed_dict);
for (auto& r : result) {
std::cout << "key: " << r.first << ", value: " << r.second << std::endl;
}
}
return 0;
}
Nach dem Login kopieren

Schließen Sie das ab Code finden Sie unter: https://github.com/bytedance/matxscript/tree/main/examples/text2ids

Zusammenfassung: Das Obige ist eine sehr einfache Vorverarbeitungslogik, die in reinem Python implementiert ist und von einem allgemeinen C++ geladen werden kann Code ausführen, kombinieren wir das Modell, um einen tatsächlichen multimodalen End-to-End-Fall zu zeigen!

5. Multimodaler Fall

Hier nehmen wir Grafik- und Text-Multimodal (Bert+Resnet) als Beispiel. Das Modell wurde mit PyTorch geschrieben, um die tatsächliche Arbeit in Training und Bereitstellung zu zeigen.

  1. Konfigurieren Sie die Umgebung
    a. Konfigurieren Sie die Infrastruktur wie gcc/cuda (normalerweise haben dies die Betriebs- und Wartungsstudenten bereits getan)
    b Installieren Sie MATXScript und darauf basierende Basisbibliotheken (Text, Vision usw.)
  2. Schreiben Sie Modellcode
    a. Sie können auf Papiere oder andere Open-Source-Implementierungen zurückgreifen, um dies selbst zu tun. Schreiben Sie einen Vorverarbeitungscode
  3. a. TextPipeline kann als normale Python-Klasse verwendet werden. Stellen Sie einfach eine Verbindung zum Datensatz her.
  4. b. VisionPipeline erfordert eine GPU-Vorverarbeitung und ist besser für die Stapelverarbeitung geeignet. Sie müssen einen DataLoader separat erstellen Quelle ByteDances interner Multithread-DataLoader später)
Hinzufügen Modellcode hochladen und mit dem Training beginnen

End-to-End-Inferenzmodell exportieren

from typing import List, Dict, Tuple
import libcut
import matx
class Vocabulary:
...
def utf8_decoder(s: List[bytes]):
return [x.decode() for x in s]
class TextNDArrayBuilder:
...
class TextPipeline:
def __init__(self, mode: str = "eval"):
self.mode = mode
self.cut_engine = libcut.Cutter('/path/to/cut_models', ...)
self.vocab = matx.script(Vocabulary)('/path/to/vocab.txt')
self.decoder = matx.script(utf8_decoder)
self.input_builder = matx.script(TextNDArrayBuilder)(self.vocab)
def process(self, text: List[bytes]):
# List[bytes] 是对齐 C++ 的 vector<string>
text: List[str] = self.decoder(text)
words: List[List[str]] = self.cut_engine(text)
batch_ids: List[List[int]] = self.vocab(words)
input_ids, segment_ids, mask_ids = self.input_builder(batch_ids, 32)
if self.mode == "train":
return input_ids.torch(), segment_ids.torch(), mask_ids.torch()
return input_ids, segment_ids, mask_ids
Nach dem Login kopieren
    Zusammenfassung: Nach den obigen Schritten können wir das Ende-zu-Ende abschließen Schulungs- und Release-Arbeiten, und der gesamte Prozess wird mit reinem Python-Code abgeschlossen und kann vollständig von den Algorithmusstudenten selbst gesteuert werden. Sollte es bei der Modellberechnung selbst zu Leistungsproblemen kommen, kann diese natürlich auch hinter den Kulissen durch automatische Bildmodifikation und -optimierung erledigt werden.

  1. Hinweis: Vollständige Codebeispiele finden Sie unter https://github.com/bytedance/matxscript/tree/main/examples/e2e_multi_modal
  2. 6. Im letzten Kapitel haben wir ein Modellpaket von einem veröffentlicht Algorithmus-Student: In diesem Kapitel wird erläutert, wie ein einheitlicher Dienst geladen und ausgeführt wird.
  3. Der komplette Server umfasst: IDL-Protokoll, Stapelstrategie, Thread-/Thread-Planung und -Anordnung, Modellbegründung ...
  4. Hier besprechen wir nur die Modellbegründung, der Rest kann wie vereinbart entwickelt werden. Wir verwenden eine Hauptfunktion, um den Prozess des Ladens und Ausführens eines Modells zu veranschaulichen:
from typing import List, Dict, Tuple
import matx
from matx import vision
class VisionPipeline:
def __init__(self,
 device_id: int = 0,
 mode: str = "eval",
 image_size: int = 224,):
self.is_training = mode == 'train'
self.mode = mode
...
def process(self, image,):
if self.is_training:
decode_nds = self.random_crop_decode(image)
flip_nds = self.random_flip(decode_nds)
resize_nds = self.resize(flip_nds)
transpose_nd = self.transpose_norm(resize_nds, vision.SYNC)
else:
decode_nds = self.decode(image)
resize_nds = self.resize(decode_nds)
crop_nds = self.center_crop(resize_nds)
transpose_nd = self.transpose_norm(crop_nds, vision.SYNC)
if self.mode == "trace":
return transpose_nd
return transpose_nd.torch()
Nach dem Login kopieren

Der obige Code ist der einfachste Fall des Ladens eines multimodalen Modells in C++. Für Studenten, die Server entwickeln, müssen sie nur einfache Abstraktionen und Konventionen erstellen . Der obige Code kann in ein einheitliches C++-Modelldienst-Framework umgewandelt werden.

VII. Weitere Informationen

Wir sind das Bytedance-AML-Machine-Learning-System-Team, das sich dafür einsetzt, dem Unternehmen ein einheitliches, leistungsstarkes integriertes Framework für Schulung und Förderung bereitzustellen und auch die Zusammenarbeit über die Volcano Engine-Plattform für maschinelles Lernen zu unterstützen Für Unternehmen wird erwartet, dass die maschinelle Lernplattform Volcano Engine ab 2023 MATX-bezogene Unterstützung bietet, einschließlich voreingestellter Spiegelumgebungen, öffentlicher Beispiele gängiger Szenarien, technischer Unterstützung beim Unternehmenszugriff und bei der Nutzung usw., wodurch kostengünstige Schulungen und Schlussfolgerungen erzielt werden können Beschleunigungs- und Integrationseffekte. Willkommen, um mehr über unsere Produkte unter https://www.volcengine.com/product/ml-platform zu erfahren.

Das obige ist der detaillierte Inhalt vonBytedance-Modell groß angelegter Einsatz im tatsächlichen Kampf. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

R.E.P.O. Energiekristalle erklärten und was sie tun (gelber Kristall)
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Beste grafische Einstellungen
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. So reparieren Sie Audio, wenn Sie niemanden hören können
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Wie man alles in Myrise freischaltet
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Jenseits von ORB-SLAM3! SL-SLAM: Szenen mit wenig Licht, starkem Jitter und schwacher Textur werden verarbeitet Jenseits von ORB-SLAM3! SL-SLAM: Szenen mit wenig Licht, starkem Jitter und schwacher Textur werden verarbeitet May 30, 2024 am 09:35 AM

Heute diskutieren wir darüber, wie Deep-Learning-Technologie die Leistung von visionbasiertem SLAM (Simultaneous Localization and Mapping) in komplexen Umgebungen verbessern kann. Durch die Kombination von Methoden zur Tiefenmerkmalsextraktion und Tiefenanpassung stellen wir hier ein vielseitiges hybrides visuelles SLAM-System vor, das die Anpassung in anspruchsvollen Szenarien wie schlechten Lichtverhältnissen, dynamischer Beleuchtung, schwach strukturierten Bereichen und starkem Jitter verbessern soll. Unser System unterstützt mehrere Modi, einschließlich erweiterter Monokular-, Stereo-, Monokular-Trägheits- und Stereo-Trägheitskonfigurationen. Darüber hinaus wird analysiert, wie visuelles SLAM mit Deep-Learning-Methoden kombiniert werden kann, um andere Forschungen zu inspirieren. Durch umfangreiche Experimente mit öffentlichen Datensätzen und selbst abgetasteten Daten demonstrieren wir die Überlegenheit von SL-SLAM in Bezug auf Positionierungsgenauigkeit und Tracking-Robustheit.

Verstehen Sie in einem Artikel: die Zusammenhänge und Unterschiede zwischen KI, maschinellem Lernen und Deep Learning Verstehen Sie in einem Artikel: die Zusammenhänge und Unterschiede zwischen KI, maschinellem Lernen und Deep Learning Mar 02, 2024 am 11:19 AM

In der heutigen Welle rasanter technologischer Veränderungen sind künstliche Intelligenz (KI), maschinelles Lernen (ML) und Deep Learning (DL) wie helle Sterne und führen die neue Welle der Informationstechnologie an. Diese drei Wörter tauchen häufig in verschiedenen hochaktuellen Diskussionen und praktischen Anwendungen auf, aber für viele Entdecker, die neu auf diesem Gebiet sind, sind ihre spezifische Bedeutung und ihre internen Zusammenhänge möglicherweise noch immer rätselhaft. Schauen wir uns also zunächst dieses Bild an. Es ist ersichtlich, dass zwischen Deep Learning, maschinellem Lernen und künstlicher Intelligenz ein enger Zusammenhang und eine fortschreitende Beziehung besteht. Deep Learning ist ein spezifischer Bereich des maschinellen Lernens und des maschinellen Lernens

Super stark! Top 10 Deep-Learning-Algorithmen! Super stark! Top 10 Deep-Learning-Algorithmen! Mar 15, 2024 pm 03:46 PM

Fast 20 Jahre sind vergangen, seit das Konzept des Deep Learning im Jahr 2006 vorgeschlagen wurde. Deep Learning hat als Revolution auf dem Gebiet der künstlichen Intelligenz viele einflussreiche Algorithmen hervorgebracht. Was sind Ihrer Meinung nach die zehn besten Algorithmen für Deep Learning? Im Folgenden sind meiner Meinung nach die besten Algorithmen für Deep Learning aufgeführt. Sie alle nehmen hinsichtlich Innovation, Anwendungswert und Einfluss eine wichtige Position ein. 1. Hintergrund des Deep Neural Network (DNN): Deep Neural Network (DNN), auch Multi-Layer-Perceptron genannt, ist der am weitesten verbreitete Deep-Learning-Algorithmus. Als er erstmals erfunden wurde, wurde er aufgrund des Engpasses bei der Rechenleistung in Frage gestellt Jahre, Rechenleistung, Der Durchbruch kam mit der Datenexplosion. DNN ist ein neuronales Netzwerkmodell, das mehrere verborgene Schichten enthält. In diesem Modell übergibt jede Schicht Eingaben an die nächste Schicht und

Xiaomi Byte schließt sich zusammen! Ein großes Modell von Xiao Ais Zugang zu Doubao: bereits auf Mobiltelefonen und SU7 installiert Xiaomi Byte schließt sich zusammen! Ein großes Modell von Xiao Ais Zugang zu Doubao: bereits auf Mobiltelefonen und SU7 installiert Jun 13, 2024 pm 05:11 PM

Laut Nachrichten vom 13. Juni hat Xiaomis Assistent für künstliche Intelligenz „Xiao Ai“ laut Bytes öffentlichem Bericht „Volcano Engine“ eine Zusammenarbeit mit Volcano Engine erzielt. Die beiden Parteien werden ein intelligenteres interaktives KI-Erlebnis auf der Grundlage des großen Beanbao-Modells erzielen . Berichten zufolge kann das von ByteDance erstellte groß angelegte Beanbao-Modell bis zu 120 Milliarden Text-Tokens effizient verarbeiten und täglich 30 Millionen Inhalte generieren. Xiaomi nutzte das große Doubao-Modell, um die Lern- und Denkfähigkeiten seines eigenen Modells zu verbessern und einen neuen „Xiao Ai Classmate“ zu schaffen, der nicht nur die Benutzerbedürfnisse genauer erfasst, sondern auch eine schnellere Reaktionsgeschwindigkeit und umfassendere Inhaltsdienste bietet. Wenn ein Benutzer beispielsweise nach einem komplexen wissenschaftlichen Konzept fragt, &ldq

Beschleunigen Sie das Diffusionsmodell und generieren Sie Bilder auf SOTA-Ebene im schnellsten Schritt. Byte Hyper-SD ist Open Source Beschleunigen Sie das Diffusionsmodell und generieren Sie Bilder auf SOTA-Ebene im schnellsten Schritt. Byte Hyper-SD ist Open Source Apr 25, 2024 pm 05:25 PM

In letzter Zeit hat DiffusionModel erhebliche Fortschritte im Bereich der Bildgenerierung gemacht und beispiellose Entwicklungsmöglichkeiten für Bild- und Videogenerierungsaufgaben eröffnet. Trotz der beeindruckenden Ergebnisse führen die mehrstufigen iterativen Entrauschungseigenschaften, die dem Inferenzprozess von Diffusionsmodellen innewohnen, zu hohen Rechenkosten. Kürzlich wurde eine Reihe von Diffusionsmodell-Destillationsalgorithmen entwickelt, um den Inferenzprozess von Diffusionsmodellen zu beschleunigen. Diese Methoden lassen sich grob in zwei Kategorien einteilen: i) bahnerhaltende Destillation; ii) bahnenerhaltende Destillation. Diese beiden Arten von Methoden werden jedoch durch die begrenzte Effektobergrenze oder Änderungen im Ausgabebereich eingeschränkt. Um diese Probleme zu lösen, schlug das technische Team von ByteDance einen Konsens zur Trajektoriensegmentierung namens Hyper-SD vor.

So verwenden Sie CNN- und Transformer-Hybridmodelle, um die Leistung zu verbessern So verwenden Sie CNN- und Transformer-Hybridmodelle, um die Leistung zu verbessern Jan 24, 2024 am 10:33 AM

Convolutional Neural Network (CNN) und Transformer sind zwei verschiedene Deep-Learning-Modelle, die bei verschiedenen Aufgaben eine hervorragende Leistung gezeigt haben. CNN wird hauptsächlich für Computer-Vision-Aufgaben wie Bildklassifizierung, Zielerkennung und Bildsegmentierung verwendet. Es extrahiert lokale Merkmale auf dem Bild durch Faltungsoperationen und führt eine Reduzierung der Merkmalsdimensionalität und räumliche Invarianz durch Pooling-Operationen durch. Im Gegensatz dazu wird Transformer hauptsächlich für Aufgaben der Verarbeitung natürlicher Sprache (NLP) wie maschinelle Übersetzung, Textklassifizierung und Spracherkennung verwendet. Es nutzt einen Selbstaufmerksamkeitsmechanismus, um Abhängigkeiten in Sequenzen zu modellieren und vermeidet so die sequentielle Berechnung in herkömmlichen rekurrenten neuronalen Netzen. Obwohl diese beiden Modelle für unterschiedliche Aufgaben verwendet werden, weisen sie Ähnlichkeiten in der Sequenzmodellierung auf

AlphaFold 3 wird auf den Markt gebracht und sagt die Wechselwirkungen und Strukturen von Proteinen und allen Lebensmolekülen umfassend und mit weitaus größerer Genauigkeit als je zuvor voraus AlphaFold 3 wird auf den Markt gebracht und sagt die Wechselwirkungen und Strukturen von Proteinen und allen Lebensmolekülen umfassend und mit weitaus größerer Genauigkeit als je zuvor voraus Jul 16, 2024 am 12:08 AM

Herausgeber | Rettichhaut Seit der Veröffentlichung des leistungsstarken AlphaFold2 im Jahr 2021 verwenden Wissenschaftler Modelle zur Proteinstrukturvorhersage, um verschiedene Proteinstrukturen innerhalb von Zellen zu kartieren, Medikamente zu entdecken und eine „kosmische Karte“ jeder bekannten Proteininteraktion zu zeichnen. Gerade hat Google DeepMind das AlphaFold3-Modell veröffentlicht, das gemeinsame Strukturvorhersagen für Komplexe wie Proteine, Nukleinsäuren, kleine Moleküle, Ionen und modifizierte Reste durchführen kann. Die Genauigkeit von AlphaFold3 wurde im Vergleich zu vielen dedizierten Tools in der Vergangenheit (Protein-Ligand-Interaktion, Protein-Nukleinsäure-Interaktion, Antikörper-Antigen-Vorhersage) deutlich verbessert. Dies zeigt, dass dies innerhalb eines einzigen einheitlichen Deep-Learning-Frameworks möglich ist

Das Shenzhen Bytedance Houhai Center verfügt über eine Gesamtbaufläche von 77.400 Quadratmetern und die Hauptstruktur wurde fertiggestellt Das Shenzhen Bytedance Houhai Center verfügt über eine Gesamtbaufläche von 77.400 Quadratmetern und die Hauptstruktur wurde fertiggestellt Jan 24, 2024 pm 05:27 PM

Laut dem offiziellen öffentlichen WeChat-Account „Innovation Nanshan“ der Bezirksregierung von Nanshan hat das Shenzhen ByteDance Houhai Center-Projekt in letzter Zeit wichtige Fortschritte gemacht. Nach Angaben der China Construction First Engineering Bureau Construction and Development Company wurde die Hauptstruktur des Projekts drei Tage früher als geplant fertiggestellt. Diese Nachricht bedeutet, dass im Kerngebiet von Nanshan Houhai ein neues Wahrzeichengebäude entstehen wird. Das Shenzhen ByteDance Houhai Center-Projekt befindet sich im Kerngebiet von Houhai, Bezirk Nanshan. Es ist das Hauptbürogebäude von Toutiao Technology Co., Ltd. in Shenzhen. Die gesamte Baufläche beträgt 77.400 Quadratmeter, bei einer Höhe von etwa 150 Metern und insgesamt 4 Untergeschossen und 32 Obergeschossen. Es wird berichtet, dass das Shenzhen ByteDance Houhai Center-Projekt ein innovatives Superhochhaus werden wird, das Büro-, Unterhaltungs-, Catering- und andere Funktionen integriert. Dieses Projekt wird Shenzhen dabei helfen, die Integration der Internetbranche voranzutreiben

See all articles