


Ein 30-jähriger historischer Rückblick, Jeff Dean: Wir haben einen Forschungsbericht über „spärliche Expertenmodelle' zusammengestellt.
Das Sparse-Expertenmodell ist ein 30 Jahre altes Konzept, das auch heute noch weit verbreitet ist und eine beliebte Architektur im Deep Learning darstellt. Zu diesen Architekturen gehören Hybrid-Expertensysteme (MoE), Switch-Transformatoren, Routing-Netzwerke, BASE-Schichten usw. Sparse-Expertenmodelle haben in vielen Bereichen wie der Verarbeitung natürlicher Sprache, Computer Vision und Spracherkennung eine gute Leistung gezeigt.
Kürzlich haben der Google-KI-Leiter Jeff Dean und andere einen Überblick über Sparse-Expert-Modelle geschrieben, das Konzept von Sparse-Expert-Modellen überprüft, eine grundlegende Beschreibung allgemeiner Algorithmen bereitgestellt und schließlich einen Ausblick auf zukünftige Forschungsrichtungen gegeben.
Papieradresse: https://arxiv.org/pdf/2209.01667.pdf
Durch Erhöhung des Rechenbudgets, der Trainingsdaten und der Modellgröße, maschinelles Lernen (insbesondere natürliche Sprache) hat erhebliche Fortschritte gemacht. Zu den bekannten Meilenstein-Sprachmodellen gehören GPT-2 (Radford et al., 2018), BERT (Devlin et al., 2018), T5 (Raffel et al., 2019), GPT-3 (Brown et al., 2020). , Gopher (Rae et al., 2021), Chinchilla (Hoffmann et al., 2022) und PaLM (Chowdhery et al., 2022).
Allerdings erfordern hochmoderne Modelle mittlerweile Tausende von dedizierten miteinander verbundenen Beschleunigern und das Training dauert Wochen oder Monate, was die Herstellung dieser Modelle teuer macht (Patterson et al., 2021). Mit der Skalierung maschineller Lernsysteme sucht das Fachgebiet nach effizienteren Schulungs- und Serviceparadigmen. Als vielversprechende Lösung haben sich Sparse-Expertenmodelle herausgestellt.
Ein Sparse-Expert-Modell (von dem Mixed Expert Systems (MoE) die beliebteste Variante ist) ist ein spezieller Typ eines neuronalen Netzwerks, bei dem ein Satz von Parametern in „Experten“ unterteilt ist und jeder „Experte“ Hat ein einzigartiges Gewicht.
Während des Trainings und der Inferenz gibt das Modell Eingabeproben an bestimmte Expertengewichte weiter, sodass jede Probe nur mit einer Teilmenge der Netzwerkparameter interagieren kann, im Gegensatz zu herkömmlichen Methoden, die das gesamte Netzwerk für jede Eingabe verwenden. Da für jede Stichprobe nur eine geringe Anzahl an Experten eingesetzt wird, reduziert sich der Rechenaufwand im Vergleich zum Gesamtmodell deutlich.
Viele moderne Sparse-Expertenmodelle lassen sich von Shazeer et al. (2017) inspirieren. Die Forschung trainierte das damals größte Modell und erzielte hochmoderne Sprachmodellierungs- und Übersetzungsergebnisse. Die Popularität von Sparse-Expert-Modellen ist weiter gestiegen, wenn sie in Verbindung mit Transformer-Sprachmodellen verwendet werden (Lepikhin et al., 2020; Fedus et al., 2021). Während sich die meisten Arbeiten mit der Verarbeitung natürlicher Sprache befassen, wurden Sparse-Expert-Modelle auch in einer Vielzahl von Bereichen erfolgreich eingesetzt, darunter Computer Vision (Puigcerver et al., 2020), Spracherkennung (You et al., 2021) und multimodales Lernen (Mustafa et al., 2022). Clark et al. (2022) untersuchten die Skalierungseigenschaften von spärlichen Expertenmodellen bei unterschiedlichen Modellgrößen und Expertenzahlen. Darüber hinaus werden aktuelle Ergebnisse zu vielen Benchmarks derzeit von spärlichen Expertenmodellen wie ST-MoE (Zoph et al., 2022) gehalten. Dieser Bereich entwickelt sich aufgrund der Fortschritte in Forschung und Technik rasant weiter.
Dieses Übersichtspapier schränkt den Untersuchungsumfang auf spärliche Expertenmodelle in der engen Deep-Learning-Ära (ab 2012) ein, gibt einen Überblick über die jüngsten Fortschritte und erörtert vielversprechende zukünftige Wege.
Sparse Expert Model
Das Konzept von MoE im maschinellen Lernen lässt sich bis vor mindestens 30 Jahren zurückverfolgen. In den frühen Konzepten definierten Experten ein vollständiges neuronales Netzwerk, und MoE ähnelte einer Ensemble-Methode.
Eigen et al. (2013) schlugen die Verwendung einer gestapelten Experten-Hybridarchitektur auf jittertem MNIST vor. Diese Arbeit legte den Grundstein für die effiziente Implementierung nachfolgender Modelle.
Shazeer et al. (2017) schlugen vor, eine MoE-Schicht zwischen zwei LSTM-Schichten einzufügen, und das resultierende spärliche Modell erreichte SOTA-Leistung bei der maschinellen Übersetzung. Doch obwohl diese Methode erfolgreich war, glich die nachfolgende Forschung einem Winterschlaf und stagnierte, und die meisten Forschungen wandten sich Transformer zu.
Zwischen 2020 und 2021 wurden GShard und Switch Transformer veröffentlicht, die beide die Feed-Forward-Schicht in Transformer durch eine Expertenschicht ersetzten.
Obwohl der Ansatz, eine Expertenschicht einzusetzen, zum vorherrschenden Paradigma geworden ist, hat die Forschung in den letzten zwei Jahren das Konzept von Expertenmodellen als völlig unabhängige Modelle überarbeitet, um Modularität und Zusammensetzbarkeit zu erreichen.
Abbildung 2 unten ist der ursprüngliche Top-K-Routing-Mechanismus, der von Shazeer et al. (2017) vorgeschlagen wurde und die Grundlage für viele nachfolgende Arbeiten bildet. In diesem Übersichtsartikel werden neue Entwicklungen bei Routing-Algorithmen in Kapitel 4 ausführlich erläutert.
Hardware
Moderne Sparse-Expertenmodelle wurden gemeinsam mit verteilten Systemen entwickelt, um die größten neuronalen Netze zu trainieren.
Untersuchungen zu großen neuronalen Netzen (Brown et al., 2020; Rae et al., 2021; Chowdhery et al., 2022) zeigen, dass neuronale Netze die Speicherkapazität eines einzelnen Beschleunigers, also Gewichte und Aktivierung, bei weitem überschritten haben Funktionen, Tensoren wie Optimierervariablen erfordern Sharding mit verschiedenen parallelen Strategien.
Drei gängige parallele Methoden umfassen: Datenparallelität (Kopieren von Modellgewichtungen, Sharding von Daten), Tensormodellparallelität (Daten- und Gewichtungstensoren werden auf mehrere Geräte aufgeteilt) und Pipeline-Parallelität (ganze Ebenen oder Ebenengruppen werden auf verschiedene Geräte aufgeteilt). Hybride Expertenmodelle sind häufig in der Lage, sich an diese parallelen Szenarien anzupassen.
In Bezug auf Training und Einsatz des MoE-Modells haben Jaszczur et al. (2021) alle Schichten des Transformer-Modells sparsifiziert und dadurch eine 37-fache Inferenzbeschleunigung erreicht; Bibliothek Das Einschränkungsproblem der statischen Experten-Stapelgröße ist gelöst.
Zusätzlich zu Datenparallelität, Modellparallelität und Expertenparallelität schlugen Rajbhandari et al. (2022) die DeepSpeed-MoE-Bibliothek vor, um ZeRO-Partitionierung und ZeRO-Offload zu unterstützen und so eine 10-fache Inferenzverbesserung und SOTA-Übersetzungsleistung zu erreichen, wodurch die Die Praxistauglichkeit des Modells in Produktionsdienstleistungen wird demonstriert.
Skalierungseigenschaften von spärlichen Expertenmodellen
Der Kreuzentropieverlust dichter neuronaler Sprachmodelle verhält sich wie ein Potenzgesetz in Bezug auf die Anzahl der Modellparameter, das Datenvolumen und das Rechenbudget (Kaplan et al., 2020). Die Potenzgesetzkoeffizienten wurden später in Hoffmann et al. (2022) korrigiert, was darauf hindeutet, dass die Berechnung des optimalen Modells eine ausgewogenere Daten- und Parametererweiterung erfordert. Im Gegensatz dazu erzielten frühe Studien zu spärlichen Expertenmodellen, die heuristisch expandierten, starke empirische Ergebnisse, beschrieben die Expansionsgesetze jedoch nicht sorgfältig. Darüber hinaus haben einige Arbeiten die Unterschiede zwischen vorgelagerten (z. B. Vortraining) und nachgelagerten (z. B. Feinabstimmung) Aktionen hervorgehoben (Fedus et al., 2021; Artetxe et al., 2021), was das Verständnis spärlicher Expertenmodelle weiter erschwert.
Upstream-Erweiterungen
Spärliche Expertenmodelle funktionieren gut, wenn sie auf großen Datensätzen trainiert werden. Ein gängiges Muster bei der Verarbeitung natürlicher Sprache besteht darin, ein vorgelagertes Training (z. B. Vortraining) durchzuführen, gefolgt von einem nachgelagerten Training (z. B. Feinabstimmung) für eine bestimmte interessierende Datenverteilung. In der Upstream-Phase erzielen spärliche Expertenmodelle durchweg höhere Gewinne als dichte Gegenmodelle. Shazeer et al. (2017) schlugen Skalierungskurven in Bezug auf Modellparameter und Rechenbudget für den 1-Milliarden-Wörter-Sprachmodellierungs-Benchmark vor (Chelba et al., 2013) und erzielten damit erhebliche Fortschritte im Vergleich zur dichten Version. Lepikhin et al. (2020) schlugen eine verbesserte Version der Modellerweiterungsfunktion vor und erzielten einen BLEU-Score-Gewinn von 13,5 für ihr größtes 600B-Parameter-sparse-Modell. Switch Transformer (Fedus et al., 2021) hat beim T5-Modell unter Verwendung derselben Rechenressourcen eine 4- bis 7-fache Wandzeitbeschleunigung gemessen. Die Arbeit untersuchte auch die Skalierung des Kreuzentropieverlusts als Funktion der Parameteranzahl, stellte jedoch fest, dass die Gewinne bei über 256 Experten abnahmen.
Downstream-Erweiterung
Eine zuverlässige Upstream-Skalierung führte jedoch nicht sofort zu konsistenten Gewinnen bei Downstream-Aufgaben. In einer Arbeit, die die Herausforderungen der Übertragung hervorhebt, beobachteten Fedus et al. (2021) eine vierfache Verbesserung vor dem Training mit einem Encoder-Decoder-Transformer mit geringem Rechenaufwand und hohen Parametern (1,6 T-Parameter, 2048 Experten pro dünn besetzter Schicht). Bei intensiven Inferenzaufgaben wie SuperGLUE ist die Feinabstimmung nicht gut. Dieses Ergebnis weist auf weitere notwendige Forschung und das möglicherweise erforderliche Gleichgewicht zwischen Berechnungen und Parametern hin.
Du et al. (2021) demonstrierten eine Erweiterung des spärlichen GLaM-Modells im Bereich von 1B-64B FLOPs unter Verwendung von 64 Experten pro spärlicher Schicht. GLaM erzielte SOTA-Ergebnisse und übertraf das 175B-Parameter-GPT-3-Modell (Brown et al., 2020) in Bezug auf die Zero-Shot- und One-Shot-Leistung. Gleichzeitig wurde der von jedem Token während der Inferenz verwendete FLOP um 49 reduziert Der Verbrauch wurde um 65 % reduziert (siehe Abbildung 4 (links) unten). Abbildung 4 unten (rechts) ist ein weiteres Beispiel für ein spärliches Modell, das bei der Inferenz mit wenigen Schüssen eine gute Leistung erbringt.
Srivastava et al. (2022) untersuchten die Kalibrierung dünn besetzter Modelle anhand der Multiple-Choice-BIG-Bench-Aufgabe, die misst, wie gut die vorhergesagte Wahrscheinlichkeit mit der richtigen Wahrscheinlichkeit übereinstimmt. Die Ergebnisse der Studie sind in Abbildung 5 unten dargestellt. Während sich die Kalibrierung sowohl für das größere dichte als auch für das spärliche Modell verbesserte, war die Kalibrierung des spärlichen Modells mit der des dichten Modells mit 10x mehr FLOPs vergleichbar.
Erweitern Sie die Anzahl, Größe und Häufigkeit von Expertenschichten.
Es gibt mehrere wichtige Hyperparameter, die die Erweiterung spärlicher Expertenmodelle steuern, darunter: 1) die Anzahl der Experten, 2) die Anzahl Anzahl der Experten pro Expertengröße und 3) Häufigkeit der Expertenstufen. Diese Entscheidungen können erhebliche Auswirkungen auf den Upstream- und Downstream-Ausbau haben.
Viele frühe Arbeiten wurden auf Tausende relativ kleiner Experten pro Schicht skaliert, was zu einer hervorragenden Vorschulungs- und Übersetzungsqualität führte (Shazeer et al., 2017; Lepikhin et al., 2020; Fedus et al., 2021). Allerdings verschlechtert sich die Qualität spärlicher Modelle überproportional, wenn eine Domänenverschiebung (Artetxe et al., 2021) oder eine Feinabstimmung für unterschiedliche Aufgabenverteilungen erfolgt (Fedus et al., 2021). Um ein besseres Gleichgewicht zwischen Berechnung und Parametern zu erreichen, können nur SOTA-Sparse-Modelle für Fow-Shot-Inferenz (GLaM (Du et al., 2021)) und Feinabstimmung (ST-MoE (Zoph et al., 2022)) verwendet werden bestenfalls 64 größere Experten. Aufgrund der erhöhten Expertendimension erfordern diese Modelle spezifische Sharding-Strategien auf Systemebene, damit Beschleuniger effektiv laufen (Du et al., 2021; Rajbhandari et al., 2022).
Routing-Algorithmus
Der Routing-Algorithmus ist ein Schlüsselmerkmal aller Sparse-Expert-Architekturen und bestimmt, wohin Proben gesendet werden sollen. Dieser Bereich wurde ausführlich untersucht, einschließlich kontraintuitiver Ansätze, die feste, nicht erlernte Routingmuster verwenden (Roller et al., 2021). Da diskrete Entscheidungen darüber getroffen werden, welche Experten ausgewählt werden sollen, sind Routing-Entscheidungen oft nicht differenzierbar.
Das Problem der Expertenauswahl wurde später als Bandit-Problem neu definiert, und es gab einige Arbeiten, die verstärktes Lernen zum Erlernen der Expertenauswahl verwendeten (Bengio et al., 2016; Rosenbaum et al., 2017; 2019; Clark et al. , 2022 ). Shazeer et al. (2017) schlugen einen differenzierbaren heuristischen Algorithmus vor, um die Schwierigkeiten des verstärkenden Lernens zu umgehen.
Dieses Papier geht näher auf die Klassifizierung von Routing-Algorithmen ein und erläutert weiter das zentrale Thema in diesem Bereich – den Lastausgleich.
Die rasante Entwicklung von Sparse-Expert-Modellen
Der Einfluss von Sparse-Expert-Modellen breitet sich schnell auf andere Bereiche über NLP hinaus aus, einschließlich Computer Vision, Spracherkennung und multimodale Anwendungen. Obwohl die Domänen unterschiedlich sind, sind die Architektur und der Algorithmus des Modells ungefähr gleich, und Tabelle 1 unten zeigt die Eingabedarstellung der dünn besetzten Schicht für verschiedene Domänen.
Spärliche Expertenmodelle haben sich in den letzten Jahren sehr schnell entwickelt. Am Beispiel des NLP führten Shazeer et al. (2017) hybride Expertenschichten für die LSTM-Sprachmodellierung und maschinelle Übersetzung ein, die zwischen den Standardschichten des LSTM-Modells eingefügt werden.
Im Jahr 2020 führten Lepikhin et al. (2020) die MoE-Schicht zum ersten Mal in Transformer ein. Als die Forscher jede Expertenschicht auf 2048 Experten erweiterten, wurde das Modell auf 100 verschiedene SOTA-Sprachen implementiert Ergebnisse.
Fedus et al. (2021) haben ein spärliches 1,6T-Parameter-Sprachmodell erstellt, das SOTA-Pre-Training-Qualität erreicht.
Neue Forschungsergebnisse treiben die Entwicklung von Wenig-Schuss-Lerninferenzen und Feinabstimmungs-Benchmarks voran. Du et al. (2021) trainierten ein reines MoE-Decoder-Sprachmodell, erzielten SOTA-Ergebnisse bei kleinen Stichproben und erforderten nur 1/3 der für das Training von GPT-3 erforderlichen Berechnungen. Zoph et al. (2022) schlugen ST-MoE vor, ein spärliches Encoder-Decoder-Modell, das SOTA für ein breites Spektrum von Inferenz- und Generierungsaufgaben erreicht. Bei Feinabstimmung auf SuperGLUE übertrifft ST-MoE PaLM-540B und nutzt dabei nur etwa 1/20 der Vortrainings-FLOPs und 1/40 der Inferenz-FLOPs.
Wann sollten Sparse-Modelle verwendet werden?
Eine häufig gestellte Frage ist, ob Ihnen ein festes Rechen- oder FLOP-Budget zugewiesen wird (z. B. 100 GPUs 20 Stunden). Welche Art von Modell sollten Sie trainieren, um die beste Leistung zu erzielen?
Grundsätzlich ermöglichen Sparse-Modelle, die Anzahl der Parameter im Modell drastisch zu erhöhen, indem die Anzahl der Experten erhöht wird, während der FLOP pro Probe ungefähr konstant bleibt. Dieser Ansatz kann je nach Zweck des Modells gut oder schlecht sein.
Sparsity ist von Vorteil, wenn Sie über viele Beschleuniger (z. B. GPU/TPU) verfügen, um alle zusätzlichen Parameter zu übertragen, die mit der Verwendung von Sparsity einhergehen.
Die Verwendung von Sparsity erfordert auch eine sorgfältige Berücksichtigung nachgelagerter Aufgaben. Wenn Sie über viele Maschinen für das Vortraining, aber nur wenige für die Feinabstimmung oder Bereitstellung verfügen, sollte die Sparsity (z. B. die Anzahl der Experten) basierend auf der in nachgelagerten Anwendungsfällen verfügbaren Speichermenge angepasst werden.
In manchen Fällen sehen spärliche Modelle immer schlechter aus als dichte Modelle. Wenn beispielsweise alle Parameter im Beschleunigerspeicher gespeichert sind, ist ein spärliches Modell einem dichten Modell unterlegen. Sparse-Modelle sind ideal, wenn Sie die Möglichkeit haben, auf mehreren Maschinen parallel zu trainieren oder zu bedienen, um zusätzliche Modellparameter von Experten zu hosten.
Darüber hinaus stellt dieses Übersichtspapier auch die Verbesserung des spärlichen Modelltrainings, der Interpretierbarkeit und zukünftiger Forschungsrichtungen vor, um mehr darüber zu erfahren Forschung.
Das obige ist der detaillierte Inhalt vonEin 30-jähriger historischer Rückblick, Jeff Dean: Wir haben einen Forschungsbericht über „spärliche Expertenmodelle' zusammengestellt.. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



Stellen Sie sich ein Modell der künstlichen Intelligenz vor, das nicht nur die Fähigkeit besitzt, die traditionelle Datenverarbeitung zu übertreffen, sondern auch eine effizientere Leistung zu geringeren Kosten erzielt. Dies ist keine Science-Fiction, DeepSeek-V2[1], das weltweit leistungsstärkste Open-Source-MoE-Modell, ist da. DeepSeek-V2 ist ein leistungsstarkes MoE-Sprachmodell (Mix of Experts) mit den Merkmalen eines wirtschaftlichen Trainings und einer effizienten Inferenz. Es besteht aus 236B Parametern, von denen 21B zur Aktivierung jedes Markers verwendet werden. Im Vergleich zu DeepSeek67B bietet DeepSeek-V2 eine stärkere Leistung, spart gleichzeitig 42,5 % der Trainingskosten, reduziert den KV-Cache um 93,3 % und erhöht den maximalen Generierungsdurchsatz auf das 5,76-fache. DeepSeek ist ein Unternehmen, das sich mit allgemeiner künstlicher Intelligenz beschäftigt

KI verändert tatsächlich die Mathematik. Vor kurzem hat Tao Zhexuan, der diesem Thema große Aufmerksamkeit gewidmet hat, die neueste Ausgabe des „Bulletin of the American Mathematical Society“ (Bulletin der American Mathematical Society) weitergeleitet. Zum Thema „Werden Maschinen die Mathematik verändern?“ äußerten viele Mathematiker ihre Meinung. Der gesamte Prozess war voller Funken, knallhart und aufregend. Der Autor verfügt über eine starke Besetzung, darunter der Fields-Medaillengewinner Akshay Venkatesh, der chinesische Mathematiker Zheng Lejun, der NYU-Informatiker Ernest Davis und viele andere bekannte Wissenschaftler der Branche. Die Welt der KI hat sich dramatisch verändert. Viele dieser Artikel wurden vor einem Jahr eingereicht.

Die von Google geförderte Leistung von JAX hat in jüngsten Benchmark-Tests die von Pytorch und TensorFlow übertroffen und belegt bei 7 Indikatoren den ersten Platz. Und der Test wurde nicht auf der TPU mit der besten JAX-Leistung durchgeführt. Obwohl unter Entwicklern Pytorch immer noch beliebter ist als Tensorflow. Aber in Zukunft werden möglicherweise mehr große Modelle auf Basis der JAX-Plattform trainiert und ausgeführt. Modelle Kürzlich hat das Keras-Team drei Backends (TensorFlow, JAX, PyTorch) mit der nativen PyTorch-Implementierung und Keras2 mit TensorFlow verglichen. Zunächst wählen sie eine Reihe von Mainstream-Inhalten aus

Boston Dynamics Atlas tritt offiziell in die Ära der Elektroroboter ein! Gestern hat sich der hydraulische Atlas einfach „unter Tränen“ von der Bühne der Geschichte zurückgezogen. Heute gab Boston Dynamics bekannt, dass der elektrische Atlas im Einsatz ist. Es scheint, dass Boston Dynamics im Bereich kommerzieller humanoider Roboter entschlossen ist, mit Tesla zu konkurrieren. Nach der Veröffentlichung des neuen Videos wurde es innerhalb von nur zehn Stunden bereits von mehr als einer Million Menschen angesehen. Die alten Leute gehen und neue Rollen entstehen. Das ist eine historische Notwendigkeit. Es besteht kein Zweifel, dass dieses Jahr das explosive Jahr der humanoiden Roboter ist. Netizens kommentierten: Die Weiterentwicklung der Roboter hat dazu geführt, dass die diesjährige Eröffnungsfeier wie Menschen aussieht, und der Freiheitsgrad ist weitaus größer als der von Menschen. Aber ist das wirklich kein Horrorfilm? Zu Beginn des Videos liegt Atlas ruhig auf dem Boden, scheinbar auf dem Rücken. Was folgt, ist atemberaubend

Anfang dieses Monats schlugen Forscher des MIT und anderer Institutionen eine vielversprechende Alternative zu MLP vor – KAN. KAN übertrifft MLP in Bezug auf Genauigkeit und Interpretierbarkeit. Und es kann MLP, das mit einer größeren Anzahl von Parametern ausgeführt wird, mit einer sehr kleinen Anzahl von Parametern übertreffen. Beispielsweise gaben die Autoren an, dass sie KAN nutzten, um die Ergebnisse von DeepMind mit einem kleineren Netzwerk und einem höheren Automatisierungsgrad zu reproduzieren. Konkret verfügt DeepMinds MLP über etwa 300.000 Parameter, während KAN nur etwa 200 Parameter hat. KAN hat eine starke mathematische Grundlage wie MLP und basiert auf dem universellen Approximationssatz, während KAN auf dem Kolmogorov-Arnold-Darstellungssatz basiert. Wie in der folgenden Abbildung gezeigt, hat KAN

Heute möchte ich eine aktuelle Forschungsarbeit der University of Connecticut vorstellen, die eine Methode zum Abgleichen von Zeitreihendaten mit großen NLP-Modellen (Natural Language Processing) im latenten Raum vorschlägt, um die Leistung von Zeitreihenprognosen zu verbessern. Der Schlüssel zu dieser Methode besteht darin, latente räumliche Hinweise (Eingabeaufforderungen) zu verwenden, um die Genauigkeit von Zeitreihenvorhersagen zu verbessern. Titel des Papiers: S2IP-LLM: SemanticSpaceInformedPromptLearningwithLLMforTimeSeriesForecasting Download-Adresse: https://arxiv.org/pdf/2403.05798v1.pdf 1. Hintergrundmodell für große Probleme

Das neueste Video von Teslas Roboter Optimus ist veröffentlicht und er kann bereits in der Fabrik arbeiten. Bei normaler Geschwindigkeit sortiert es Batterien (Teslas 4680-Batterien) so: Der Beamte hat auch veröffentlicht, wie es bei 20-facher Geschwindigkeit aussieht – auf einer kleinen „Workstation“, pflücken und pflücken und pflücken: Dieses Mal wird es freigegeben. Eines der Highlights Der Vorteil des Videos besteht darin, dass Optimus diese Arbeit in der Fabrik völlig autonom und ohne menschliches Eingreifen während des gesamten Prozesses erledigt. Und aus Sicht von Optimus kann es auch die krumme Batterie aufnehmen und platzieren, wobei der Schwerpunkt auf der automatischen Fehlerkorrektur liegt: In Bezug auf die Hand von Optimus gab der NVIDIA-Wissenschaftler Jim Fan eine hohe Bewertung ab: Die Hand von Optimus ist der fünffingrige Roboter der Welt am geschicktesten. Seine Hände sind nicht nur taktil

Die Zielerkennung ist ein relativ ausgereiftes Problem in autonomen Fahrsystemen, wobei die Fußgängererkennung einer der ersten Algorithmen ist, die eingesetzt werden. In den meisten Arbeiten wurde eine sehr umfassende Recherche durchgeführt. Die Entfernungswahrnehmung mithilfe von Fischaugenkameras für die Rundumsicht ist jedoch relativ wenig untersucht. Aufgrund der großen radialen Verzerrung ist es schwierig, die standardmäßige Bounding-Box-Darstellung in Fischaugenkameras zu implementieren. Um die obige Beschreibung zu vereinfachen, untersuchen wir erweiterte Begrenzungsrahmen-, Ellipsen- und allgemeine Polygondesigns in Polar-/Winkeldarstellungen und definieren eine mIOU-Metrik für die Instanzsegmentierung, um diese Darstellungen zu analysieren. Das vorgeschlagene Modell „fisheyeDetNet“ mit polygonaler Form übertrifft andere Modelle und erreicht gleichzeitig 49,5 % mAP auf dem Valeo-Fisheye-Kameradatensatz für autonomes Fahren
