Inhaltsverzeichnis
Berechnungsprogramm
Nachteile des Reinforcement Learning​
Wie oben erwähnt, ist die Forschung und Entwicklung von Reinforcement Learning von entscheidender Bedeutung. Hier sind einige praktische Beispiele für Reinforcement Learning aus einer McKinsey & Company-Umfrage, die Folgendes bewirken können:
Reflexion über verstärkendes Lernen
Heim Technologie-Peripheriegeräte KI Wird Verstärkungslernen überbewertet?

Wird Verstärkungslernen überbewertet?

Apr 13, 2023 am 09:31 AM
机器学习 强化学习 围棋

Übersetzer |. Li Rui

Rezensent |. Sun Shujuan

verstehtdie Spielregeln nicht. Aber Diese App versteht, dass sie danach strebt, ein Ziel zu erreichen, nämlich im Spiel zu gewinnen. Da das Computerprogramm die Regeln nicht kennt, sind die Züge, mit denen Sie anfangen, Schach zu spielen, zufällig. Einige dieser Tricks sind völlig bedeutungslos und werden für Sie leicht zu gewinnen sein. Nehmen wir an, dass es Ihnen so viel Spaß macht, mit diesem Freund Schach zu spielen, dass Sie süchtig nach dem Spiel sind.

Aber das Computerprogramm wird irgendwann gewinnen, weil es nach und nach Wege und Tricks lernen wird, um dich zu besiegencount. Obwohl dieses hypothetische Szenario

weit hergeholt erscheinen mag, sollte es Ihnen ein grundlegendes Verständnis dafür vermitteln, wie Reinforcement Learning (ein Bereich des maschinellen Lernens) im Allgemeinen funktioniert. Wie intelligent ist Reinforcement Learning? ​Die menschliche Intelligenz umfasst viele Eigenschaften, darunter den Erwerb von Wissen, den Wunsch, intellektuelle Fähigkeiten zu erweitern, und intuitives Denken. Die menschliche Intelligenz wurde in Zweifel gezogen, als Schachweltmeister Garry Kasparov gegen einen IBM-Computer namens Deep Blue verlor. Apokalyptische Szenarien, die eine Zukunft darstellen, in der Roboter die Menschheit beherrschen, erregen nicht nur die Aufmerksamkeit der Öffentlichkeit, sondern beherrschen auch das Mainstream-Bewusstsein. Allerdings ist „Deep Blue“

kein gewöhnlicher Gegner. Schach spielen

Wird Verstärkungslernen überbewertet? mit diesem

Berechnungsprogramm

ist wie Schach spielen mit einem tausendjährigen alten

Mann, der ununterbrochen Schach gespielt hat. Sein ganzes Leben lang . Aber „Deep Blue“ ist gut darin, ein bestimmtes Spiel zu spielen, nicht aber andere intellektuelle Aktivitäten wie das Spielen eines Instruments, ein Buch schreiben, die Durchführung wissenschaftlicher Experimente, Kindererziehung oder das Reparieren von Autos. Dies soll auf keinen Fall die Errungenschaften von „Deep Blue“ schmälern . Im Gegensatz zu bedarf die Vorstellung, dass Computer den Menschen an intellektuellen Fähigkeiten übertreffen können, einer sorgfältigen Prüfung, beginnend mit einer Analyse, wie Reinforcement Learning funktioniert . Wie Reinforcement Learning funktioniert? kumulative Belohnungen.

Einfach ausgedrückt: Bestärkendes LernenRoboter werden mit einem Belohnungs- und Bestrafungsmechanismus trainiert, Sie werden für richtige Handlungen belohnt, und falsche Handlungen werden für falsche Handlungen bestraft. Reinforcement Learning Bots „denken“ nicht, wie man bessere Maßnahmen ergreifen kann, sie machen einfach alle Maßnahmen möglich, um die Erfolgsaussichten zu maximieren.

Nachteile des Reinforcement Learning​

Wird Verstärkungslernen überbewertet?

Der Hauptnachteil des Reinforcement Learning besteht darin, dass es den Einsatz einer großen Menge an Ressourcen erfordert, um seine Ziele zu erreichen. Der Erfolg des Reinforcement Learning im Go-Spiel verdeutlicht diesen Punkt. Hierbei handelt es sich um ein beliebtes Spiel für zwei Spieler, bei dem das Ziel darin besteht, mit den eigenen Figuren die größtmögliche Fläche auf dem Spielbrett zu besetzen und gleichzeitig den Verlust von Figuren zu vermeiden.

AlphaGo Master ist ein Computerprogramm, das menschliche Spieler im Go-Spiel schlägt. Es verbraucht viel Geld und Arbeitskraft, darunter viele Ingenieure, sehr umfangreiche Spielerfahrung sowie 256 GPUs und 128.000 CPUs.

In den Prozess zu lernen, wie man das Spiel gewinnt, müssen viele Ressourcen und Energie investiert werden. Das wirft die Frage auf: Ist es sinnvoll, eine KI zu entwickeln, die nicht intuitiv denken kann? Sollte die KI-Forschung nicht versuchen, die menschliche Intelligenz zu imitieren? KI verhält sich wie ein Mensch und ihr Einsatz zur Lösung komplexer Probleme erfordert eine Weiterentwicklung. Gegen Reinforcement Learning spricht dagegen, dass sich die KI-Forschung darauf konzentrieren sollte, Maschinen dazu zu bringen, Dinge zu tun, zu denen derzeit nur Menschen und Tiere in der Lage sind. Aus dieser Perspektive ist der Vergleich zwischen künstlicher Intelligenz und menschlicher Intelligenz angebracht.

Quantum Reinforcement Learning​Reinforcement Learning ist ein aufstrebendes Feld, das angeblich einige der oben genannten Probleme lösen kann. Quantum Reinforcement Learning (QRL) ist eine Methode zur Beschleunigung des Rechnens.

Erstens soll Quantum Reinforcement Learning (QRL) das Lernen beschleunigen, indem die Phasen der Exploration (Entdeckung der Strategie) und Exploitation (Auswahl der besten Strategie) optimiert werden. Einige aktuelle Anwendungen und vorgeschlagene Quantencomputer verbessern die Datenbanksuche, faktorisieren große Zahlen in Primzahlen und vieles mehr.

Obwohl Quantum Reinforcement Learning (QRL) nicht auf bahnbrechende Weise entstanden ist, verspricht es, einige der größten Herausforderungen des konventionellen Reinforcement Learning zu lösen.

Business Case für Reinforcement Learning​

Wie oben erwähnt, ist die Forschung und Entwicklung von Reinforcement Learning von entscheidender Bedeutung. Hier sind einige praktische Beispiele für Reinforcement Learning aus einer McKinsey & Company-Umfrage, die Folgendes bewirken können:

Wird Verstärkungslernen überbewertet?

  • Optimieren Sie das Halbleiter- und Chipdesign, optimieren Sie Herstellungsprozesse und steigern Sie die Produktion der Halbleiterindustrie.
  • Steigern Sie die Fabrikproduktion, optimieren Sie die Logistik, um Abfall und Kosten zu reduzieren und steigern Sie die landwirtschaftlichen Gewinne.
  • Reduzieren Sie die Markteinführungszeit für neue Systeme in der Luft- und Raumfahrt- und Verteidigungsindustrie.
  • Optimieren Sie den Designprozess und verbessern Sie die Produktionseffizienz der Automobilindustrie.
  • Steigern Sie den Umsatz, verbessern Sie das Kundenerlebnis und bieten Sie Kunden erweiterte Personalisierung bei Finanzdienstleistungen durch Echtzeittransaktionen und Preisstrategien .
  • Minendesign optimieren, Stromerzeugung verwalten, allgemeine Logistikplanung anwenden, Abläufe optimieren, Kosten senken und Produktion steigern.
  • Steigern Sie die Produktion durch Echtzeitüberwachung und präzises Bohren, optimieren Sie die Fahrtrouten von Tankern, erreichen Sie vorausschauende Wartung und verhindern Sie Geräteausfälle die Öl- und Gasindustrie.
  • Arzneimittelentwicklung fördern, Forschungsprozesse optimieren, Produktion automatisieren und Biomethoden in der Pharmaindustrie optimieren.
  • Optimieren Sie die Lieferkette, implementieren Sie eine erweiterte Bestandsmodellierung und bieten Sie Kunden im Einzelhandel fortschrittliche personalisierte Dienstleistungen an.
  • Optimieren und verwalten Sie Netzwerke und wenden Sie Kundenpersonalisierung in der Telekommunikationsbranche an.
  • Optimieren Sie Transportlogistikrouten, Netzwerkplanung und Lagerabläufe.
  • Verwenden Sie Proxys der nächsten Generation, um Daten von Websites zu extrahieren .

Reflexion über verstärkendes Lernen

Die Fähigkeit, das Lernen zu stärken, kann begrenzt sein, aber es wird nicht überbewertet. Darüber hinaus nehmen mit der Zunahme von Forschungs- und Entwicklungsprojekten für Reinforcement Learning auch die potenziellen Anwendungsfälle in nahezu allen Wirtschaftszweigen zu.

Die groß angelegte Einführung von Reinforcement Learning hängt von mehreren Faktoren ab, darunter der Optimierung des Algorithmusdesigns, der Konfiguration der Lernumgebung usw Verfügbarkeit von Rechenleistung.

Originaltitel: Wird Verstärkungslernen überbewertet? Aleksandras Šulženko 🎜 🎜#

Das obige ist der detaillierte Inhalt vonWird Verstärkungslernen überbewertet?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

R.E.P.O. Energiekristalle erklärten und was sie tun (gelber Kristall)
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Beste grafische Einstellungen
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. So reparieren Sie Audio, wenn Sie niemanden hören können
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Wie man alles in Myrise freischaltet
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

15 empfohlene kostenlose Open-Source-Bildanmerkungstools 15 empfohlene kostenlose Open-Source-Bildanmerkungstools Mar 28, 2024 pm 01:21 PM

Bei der Bildanmerkung handelt es sich um das Verknüpfen von Beschriftungen oder beschreibenden Informationen mit Bildern, um dem Bildinhalt eine tiefere Bedeutung und Erklärung zu verleihen. Dieser Prozess ist entscheidend für maschinelles Lernen, das dabei hilft, Sehmodelle zu trainieren, um einzelne Elemente in Bildern genauer zu identifizieren. Durch das Hinzufügen von Anmerkungen zu Bildern kann der Computer die Semantik und den Kontext hinter den Bildern verstehen und so den Bildinhalt besser verstehen und analysieren. Die Bildanmerkung hat ein breites Anwendungsspektrum und deckt viele Bereiche ab, z. B. Computer Vision, Verarbeitung natürlicher Sprache und Diagramm-Vision-Modelle. Sie verfügt über ein breites Anwendungsspektrum, z. B. zur Unterstützung von Fahrzeugen bei der Identifizierung von Hindernissen auf der Straße und bei der Erkennung und Diagnose von Krankheiten durch medizinische Bilderkennung. In diesem Artikel werden hauptsächlich einige bessere Open-Source- und kostenlose Bildanmerkungstools empfohlen. 1.Makesens

In diesem Artikel erfahren Sie mehr über SHAP: Modellerklärung für maschinelles Lernen In diesem Artikel erfahren Sie mehr über SHAP: Modellerklärung für maschinelles Lernen Jun 01, 2024 am 10:58 AM

In den Bereichen maschinelles Lernen und Datenwissenschaft stand die Interpretierbarkeit von Modellen schon immer im Fokus von Forschern und Praktikern. Mit der weit verbreiteten Anwendung komplexer Modelle wie Deep Learning und Ensemble-Methoden ist das Verständnis des Entscheidungsprozesses des Modells besonders wichtig geworden. Explainable AI|XAI trägt dazu bei, Vertrauen in maschinelle Lernmodelle aufzubauen, indem es die Transparenz des Modells erhöht. Eine Verbesserung der Modelltransparenz kann durch Methoden wie den weit verbreiteten Einsatz mehrerer komplexer Modelle sowie der Entscheidungsprozesse zur Erläuterung der Modelle erreicht werden. Zu diesen Methoden gehören die Analyse der Merkmalsbedeutung, die Schätzung des Modellvorhersageintervalls, lokale Interpretierbarkeitsalgorithmen usw. Die Merkmalswichtigkeitsanalyse kann den Entscheidungsprozess des Modells erklären, indem sie den Grad des Einflusses des Modells auf die Eingabemerkmale bewertet. Schätzung des Modellvorhersageintervalls

Transparent! Eine ausführliche Analyse der Prinzipien der wichtigsten Modelle des maschinellen Lernens! Transparent! Eine ausführliche Analyse der Prinzipien der wichtigsten Modelle des maschinellen Lernens! Apr 12, 2024 pm 05:55 PM

Laienhaft ausgedrückt ist ein Modell für maschinelles Lernen eine mathematische Funktion, die Eingabedaten einer vorhergesagten Ausgabe zuordnet. Genauer gesagt ist ein Modell für maschinelles Lernen eine mathematische Funktion, die Modellparameter anpasst, indem sie aus Trainingsdaten lernt, um den Fehler zwischen der vorhergesagten Ausgabe und der wahren Bezeichnung zu minimieren. Beim maschinellen Lernen gibt es viele Modelle, z. B. logistische Regressionsmodelle, Entscheidungsbaummodelle, Support-Vektor-Maschinenmodelle usw. Jedes Modell verfügt über seine anwendbaren Datentypen und Problemtypen. Gleichzeitig gibt es viele Gemeinsamkeiten zwischen verschiedenen Modellen oder es gibt einen verborgenen Weg für die Modellentwicklung. Am Beispiel des konnektionistischen Perzeptrons können wir es durch Erhöhen der Anzahl verborgener Schichten des Perzeptrons in ein tiefes neuronales Netzwerk umwandeln. Wenn dem Perzeptron eine Kernelfunktion hinzugefügt wird, kann es in eine SVM umgewandelt werden. Dieses hier

Identifizieren Sie Über- und Unteranpassung anhand von Lernkurven Identifizieren Sie Über- und Unteranpassung anhand von Lernkurven Apr 29, 2024 pm 06:50 PM

In diesem Artikel wird vorgestellt, wie Überanpassung und Unteranpassung in Modellen für maschinelles Lernen mithilfe von Lernkurven effektiv identifiziert werden können. Unteranpassung und Überanpassung 1. Überanpassung Wenn ein Modell mit den Daten übertrainiert ist, sodass es daraus Rauschen lernt, spricht man von einer Überanpassung des Modells. Ein überangepasstes Modell lernt jedes Beispiel so perfekt, dass es ein unsichtbares/neues Beispiel falsch klassifiziert. Für ein überangepasstes Modell erhalten wir einen perfekten/nahezu perfekten Trainingssatzwert und einen schrecklichen Validierungssatz-/Testwert. Leicht geändert: „Ursache der Überanpassung: Verwenden Sie ein komplexes Modell, um ein einfaches Problem zu lösen und Rauschen aus den Daten zu extrahieren. Weil ein kleiner Datensatz als Trainingssatz möglicherweise nicht die korrekte Darstellung aller Daten darstellt. 2. Unteranpassung Heru.“

Die Entwicklung der künstlichen Intelligenz in der Weltraumforschung und der Siedlungstechnik Die Entwicklung der künstlichen Intelligenz in der Weltraumforschung und der Siedlungstechnik Apr 29, 2024 pm 03:25 PM

In den 1950er Jahren wurde die künstliche Intelligenz (KI) geboren. Damals entdeckten Forscher, dass Maschinen menschenähnliche Aufgaben wie das Denken ausführen können. Später, in den 1960er Jahren, finanzierte das US-Verteidigungsministerium künstliche Intelligenz und richtete Labore für die weitere Entwicklung ein. Forscher finden Anwendungen für künstliche Intelligenz in vielen Bereichen, etwa bei der Erforschung des Weltraums und beim Überleben in extremen Umgebungen. Unter Weltraumforschung versteht man die Erforschung des Universums, das das gesamte Universum außerhalb der Erde umfasst. Der Weltraum wird als extreme Umgebung eingestuft, da sich seine Bedingungen von denen auf der Erde unterscheiden. Um im Weltraum zu überleben, müssen viele Faktoren berücksichtigt und Vorkehrungen getroffen werden. Wissenschaftler und Forscher glauben, dass die Erforschung des Weltraums und das Verständnis des aktuellen Zustands aller Dinge dazu beitragen können, die Funktionsweise des Universums zu verstehen und sich auf mögliche Umweltkrisen vorzubereiten

Implementierung von Algorithmen für maschinelles Lernen in C++: Häufige Herausforderungen und Lösungen Implementierung von Algorithmen für maschinelles Lernen in C++: Häufige Herausforderungen und Lösungen Jun 03, 2024 pm 01:25 PM

Zu den häufigsten Herausforderungen, mit denen Algorithmen für maschinelles Lernen in C++ konfrontiert sind, gehören Speicherverwaltung, Multithreading, Leistungsoptimierung und Wartbarkeit. Zu den Lösungen gehören die Verwendung intelligenter Zeiger, moderner Threading-Bibliotheken, SIMD-Anweisungen und Bibliotheken von Drittanbietern sowie die Einhaltung von Codierungsstilrichtlinien und die Verwendung von Automatisierungstools. Praktische Fälle zeigen, wie man die Eigen-Bibliothek nutzt, um lineare Regressionsalgorithmen zu implementieren, den Speicher effektiv zu verwalten und leistungsstarke Matrixoperationen zu nutzen.

Erklärbare KI: Erklären komplexer KI/ML-Modelle Erklärbare KI: Erklären komplexer KI/ML-Modelle Jun 03, 2024 pm 10:08 PM

Übersetzer |. Rezensiert von Li Rui |. Chonglou Modelle für künstliche Intelligenz (KI) und maschinelles Lernen (ML) werden heutzutage immer komplexer, und die von diesen Modellen erzeugten Ergebnisse sind eine Blackbox, die den Stakeholdern nicht erklärt werden kann. Explainable AI (XAI) zielt darauf ab, dieses Problem zu lösen, indem es Stakeholdern ermöglicht, die Funktionsweise dieser Modelle zu verstehen, sicherzustellen, dass sie verstehen, wie diese Modelle tatsächlich Entscheidungen treffen, und Transparenz in KI-Systemen, Vertrauen und Verantwortlichkeit zur Lösung dieses Problems gewährleistet. In diesem Artikel werden verschiedene Techniken der erklärbaren künstlichen Intelligenz (XAI) untersucht, um ihre zugrunde liegenden Prinzipien zu veranschaulichen. Mehrere Gründe, warum erklärbare KI von entscheidender Bedeutung ist. Vertrauen und Transparenz: Damit KI-Systeme allgemein akzeptiert und vertrauenswürdig sind, müssen Benutzer verstehen, wie Entscheidungen getroffen werden

Fünf Schulen des maschinellen Lernens, die Sie nicht kennen Fünf Schulen des maschinellen Lernens, die Sie nicht kennen Jun 05, 2024 pm 08:51 PM

Maschinelles Lernen ist ein wichtiger Zweig der künstlichen Intelligenz, der Computern die Möglichkeit gibt, aus Daten zu lernen und ihre Fähigkeiten zu verbessern, ohne explizit programmiert zu werden. Maschinelles Lernen hat ein breites Anwendungsspektrum in verschiedenen Bereichen, von der Bilderkennung und der Verarbeitung natürlicher Sprache bis hin zu Empfehlungssystemen und Betrugserkennung, und es verändert unsere Lebensweise. Im Bereich des maschinellen Lernens gibt es viele verschiedene Methoden und Theorien, von denen die fünf einflussreichsten Methoden als „Fünf Schulen des maschinellen Lernens“ bezeichnet werden. Die fünf Hauptschulen sind die symbolische Schule, die konnektionistische Schule, die evolutionäre Schule, die Bayes'sche Schule und die Analogieschule. 1. Der Symbolismus, auch Symbolismus genannt, betont die Verwendung von Symbolen zum logischen Denken und zum Ausdruck von Wissen. Diese Denkrichtung glaubt, dass Lernen ein Prozess der umgekehrten Schlussfolgerung durch das Vorhandene ist

See all articles