


Fünf Erfolgsgeschichten erforschen den Geschäftswert der Verarbeitung natürlicher Sprache
Daten sind heute eines der wertvollsten Geschäftsgüter. Laut dem Bericht „State of the CIO 2022“ von CIO.com gaben 35 % der IT-Führungskräfte an, dass Daten und Geschäftsanalysen in diesem Jahr den größten Anteil der IT-Investitionen ihres Unternehmens ausmachen werden, und 58 % der Befragten gaben an, dass dies im nächsten Jahr der Fall sein wird Sie werden ihre Investitionen in die Datenanalyse erhöhen.
Während Daten in vielen Formen vorliegen, ist der vielleicht größte, unerschlossene Datenpool Text, egal ob es sich um Patente, Produktspezifikationen, wissenschaftliche Veröffentlichungen, Marktforschung, Nachrichten oder soziale Feeds handelt. Sie basieren alle auf Text , und die Zahl der Texte wächst ständig. Laut der Daten- und Analysestudie 2022 von Foundry glauben 36 % der IT-Führungskräfte, dass die Verwaltung dieser unstrukturierten Daten eine ihrer größten Herausforderungen darstellt. Aus diesem Grund weist das Forschungsunternehmen Lux Research darauf hin, dass die Technologie der Verarbeitung natürlicher Sprache (NLP) – insbesondere die Themenmodellierung – zu einem Schlüsselinstrument für die Erschließung des Werts von Daten wird.
Die Verarbeitung natürlicher Sprache ist ein Zweig der künstlichen Intelligenz (KI), mit dem Computer trainiert werden, Sprache zu verstehen, zu verarbeiten und zu generieren. Suchmaschinen, maschinelle Übersetzungsdienste und Sprachassistenten basieren alle auf der Verarbeitung natürlicher Sprache. Die Themenmodellierung ist eine Technik zur Verarbeitung natürlicher Sprache, die eine Idee in Unterkategorien allgemeiner Konzepte zerlegt, die durch Phrasen definiert werden. Laut Lux Research ermöglicht die Themenmodellierung Unternehmen, Dokumente mit bestimmten Themen zu verknüpfen und dann Daten zu extrahieren, beispielsweise Wachstumstrends in einem Thema im Laufe der Zeit. Die Themenmodellierung kann auch verwendet werden, um einen „Fingerabdruck“ für ein bestimmtes Dokument zu erstellen und dann andere Dokumente mit ähnlichen Fingerabdrücken zu entdecken.
Da sich Unternehmen zunehmend für KI interessieren, wenden sie sich der Verarbeitung natürlicher Sprache zu, um den Wert unstrukturierter Daten in Textdokumenten zu erschließen. Das Forschungsunternehmen MarketsandMarkets prognostiziert, dass der Markt für die Verarbeitung natürlicher Sprache von 15,7 Milliarden US-Dollar im Jahr 2022 auf 49,4 Milliarden US-Dollar im Jahr 2027 wachsen wird, mit einer durchschnittlichen jährlichen Wachstumsrate (CAGR) von 25,7 % in diesem Zeitraum.
Schauen wir uns fünf Beispiele an, wie Unternehmen die Verarbeitung natürlicher Sprache nutzen, um Geschäftsergebnisse zu erzielen.
Eli Lilly: Globale Geschäftsabwicklung durch Verarbeitung natürlicher Sprache
Das multinationale Pharmaunternehmen Eli Lilly nutzt die Verarbeitung natürlicher Sprache, um mehr als 30.000 Mitarbeitern auf der ganzen Welt dabei zu helfen, genaue und zeitnahe Informationen auszutauschen innerhalb und außerhalb des Unternehmens. Lilly hat eine selbst entwickelte IT-Lösung namens Lilly Translate entwickelt, die natürliche Sprachverarbeitung und Deep Learning nutzt, um Inhaltsübersetzungen über eine bewährte API-Ebene zu generieren.
Viele Jahre lang verließ sich Eli Lilly auf externe Anbieter menschlicher Übersetzungen, um eine Vielzahl von Inhalten zu übersetzen, von internen Schulungsmaterialien bis hin zu formellen technischen Austauschen mit Aufsichtsbehörden. Jetzt bietet der Lilly Translate-Dienst Benutzern und Systemen Echtzeitübersetzungen von Word, Excel, PowerPoint und Text, während das Dokumentformat unverändert bleibt. Eli Lilly verwendet Deep-Learning-Sprachmodelle, die auf Biowissenschaften und Lilly-Inhalten basieren, um die Übersetzungsgenauigkeit zu verbessern und verfeinerte Sprachmodelle zu erstellen, die Lilly-spezifische Terminologie und branchenspezifische Fachsprache erkennen und gleichzeitig das Format regulierter Dokumente beibehalten.
„Lilly Translate berührt jeden Bereich des Unternehmens, von der Personalabteilung über Unternehmensprüfungsdienste bis hin zu Ethik und Compliance“, sagte Timothy F. Coleman, Vizepräsident für Informations- und digitale Lösungen bei Lilly. Hotline, Finanzen, Vertrieb und Marketing, und viele andere Bereiche sparen jetzt viel Zeit statt Wochen und geben wichtige Ressourcen frei, um sich auf andere wichtige Geschäftsaktivitäten zu konzentrieren.
Colemans Rat: Unterstützen Sie Projekte, die von Leidenschaft angetrieben werden. Lilly Translate begann als Leidenschaftsprojekt eines neugierigen Softwareentwicklers, dessen Idee darin bestand, ein Problem im Systemportfolio von Lilly Regulatory Affairs zu lösen: Geschäftspartner erlebten ständig Verzögerungen und Reibungen bei ihren Übersetzungsdiensten. Coleman teilte die Idee und die technische Vision mit anderen Führungskräften und Managern und erhielt sofort Projektunterstützung von Eli Lillys internationaler Führung für regulatorische Angelegenheiten, die sich für Investitionen in das Tool einsetzte. „[Die Idee] war eine großartige Kombination aus der Möglichkeit, neue Technologien zu erforschen und kennenzulernen. Was als großartige Lernmöglichkeit begann, hat sich nun zu etwas entwickelt, das Lilly-Softwareentwickler nutzen und nutzen können. „Eine großartige Projektmöglichkeit.“Accenture: Verwendung natürlicher Sprachverarbeitung zur Analyse von VerträgenAccenture nutzt natürliche Sprachverarbeitung zur rechtlichen Analyse. Das Legal Intelligent Contract Exploration (ALICE)-Projekt von Accenture hilft diesem globalen Dienstleistungsunternehmen mit 2.800 Fachleuten bei der Textsuche in seinen Millionen Verträgen, einschließlich der Suche nach Vertragsbedingungen.ALICE verwendet „Worteinbettung“, eine Methode zur Verarbeitung natürlicher Sprache, die den Vergleich zwischen Wörtern basierend auf semantischer Ähnlichkeit unterstützen kann. Das Modell untersucht Vertragsdokumente Absatz für Absatz und sucht nach Schlüsselwörtern, um festzustellen, ob der Absatz für einen bestimmten Vertragsklauseltyp relevant ist. Beispielsweise erscheinen Wörter wie „Überschwemmung“, „Erdbeben“ oder „Katastrophe“ häufig mit einer Klausel über „höhere Gewalt“.
Mike Maresca, Global Managing Director, Digital Business Transformation, Operations and Enterprise Analytics bei Accenture, sagte: „Während wir diese Fähigkeit weiterhin nutzen und verbessern, nimmt ihre Nutzung weiter zu, wir sehen zusätzliche Wertchancen und sind auf der Suche danach.“ Neue Möglichkeiten, aus vorhandenen Daten einen Mehrwert zu ziehen
Accenture sagt, dass das Projekt die Zeit, die Anwälte damit verbringen, Dokumente manuell zu lesen, um spezifische Informationen zu erhalten, erheblich reduziert.
Marescas Rat: Scheuen Sie sich nicht, tiefer in die Verarbeitung natürlicher Sprache einzutauchen. „Wenn Innovation Teil der Kultur ist, können Sie keine Angst vor dem Scheitern haben und lassen Sie uns experimentieren und iterieren.“ Deep Learning zur automatischen Verarbeitung von Kundenanfragen nach Bewertungen. Die Abteilung erhält jeden Monat mehr als 100.000 eingehende Anfragen und musste zuvor lesen und Maßnahmen ergreifen, bis Verizons IT-Abteilung – Global Technology Solutions (GTS) – den AI-Enabled Digital Worker für Service Assurance entwickelte.
Dieser Digital Worker kombiniert webbasierte Deep-Learning-Technologie mit natürlicher Sprachverarbeitung, um Reparaturaufträge zu lesen, die hauptsächlich per E-Mail und über das Verizon-Portal gesendet werden. Er reagiert automatisch auf die häufigsten Anfragen, z. B. die Meldung des aktuellen Arbeitsauftragsstatus Der Fortschritt wird aktualisiert und komplexere Probleme werden menschlichen Ingenieuren vorgelegt.
„Durch die Automatisierung der Antworten auf diese Anfragen können wir innerhalb von Minuten statt Stunden nach dem Versenden der E-Mail antworten“, sagte Stefan Toth, Executive Director of Systems Engineering, Global Technology Solutions (GTS), Verizon Business Group.
Im Februar 2020 gab Verizon an, dass Digital Worker seit dem zweiten Quartal des letzten Jahres fast 10.000 Arbeitsstunden pro Monat eingespart habe.
Toths Rat: Suchen Sie nach Open Source. „Schauen Sie sich um, vernetzen Sie sich mit Ihren Geschäftspartnern, und ich bin sicher, Sie werden Möglichkeiten finden. Denken Sie über Open Source nach und experimentieren Sie, bevor Sie eine große finanzielle Verpflichtung eingehen. Wir haben festgestellt, dass es mittlerweile eine Menge Open-Source-Software gibt
Great Wolf Lodge: Mithilfe von KI, die auf der Verarbeitung natürlicher Sprache basiert, um die Stimmung der Gäste zu verfolgen.
Der von der Krankenhaus- und Unterhaltungskette Great Wolf Lodge entwickelte Artificial Intelligence Lexicographer (GAIL) überprüft Kommentare in monatlichen Umfragen, um festzustellen, ob der Autor möglicherweise ein Troll ist. Kritische oder neutrale Partei.
Dieses KI-Tool nutzt die Verarbeitung natürlicher Sprache und wurde anhand von mehr als 67.000 Bewertungen speziell für die Dienstleistungsbranche trainiert. GAIL läuft in der Cloud und nutzt einen intern entwickelten Algorithmus, um die Schlüsselfaktoren zu ermitteln, die darauf hinweisen, wie die Befragten über Great Wolf Lodge denken. Great Wolf Lodge gab an, dass die Genauigkeit von GAIL ab September 2019 95 % erreichen kann. Für einen kleinen Teil der Informationen, die GAIL nicht verstehen kann, wird Great Wolf Lodge die traditionelle Textanalyse verwenden, um sie zu verarbeiten.
Der Chief Information Officer von Great Wolf Lodge, Edward Malinowski, sagte: „Wir möchten in jeder Hinsicht besser mit unseren Gästen interagieren.“
Das Geschäftsteam von Great Wolf Lodge nutzt die von GAIL gewonnenen Erkenntnisse, um seine Dienstleistungen anzupassen, und das Unternehmen entwickelt sich derzeit weiter Ein Chatbot, der häufig gestellte Fragen der Gäste zu den Dienstleistungen der Great Wolf Lodge beantwortet.
Malinowskis Rat: Vermeiden Sie Technologie um der Technologie willen. Wählen Sie Tools, die die richtige Balance zwischen Technologie und Praktikabilität finden und auf die Geschäftsziele abgestimmt sind. „Man muss vorsichtig sein, was eine Spielerei und was eine echte Lösung für ein Problem ist.“
Aetna: Schnelle Schadensregulierung mit natürlicher Sprachverarbeitung
Die Krankenversicherungsgesellschaft Aetna entwickelt die App „Auto-Adjusting of Complex Provider Contracts“ zum automatisierten Lesen von Notizen Informationen zu Zahlungen, Selbstbehalten und unabhängigen Ausgabenanweisungen in jedem Vertrag, berechnen Sie dann die Preise und aktualisieren Sie die Ansprüche.
Die App kombiniert natürliche Sprachverarbeitung und spezielle Datenbanksoftware, um Zahlungsattribute zu identifizieren und zusätzliche Daten zu erstellen, die automatisch vom System gelesen werden können. Dadurch werden viele Ansprüche über Nacht beglichen.
Die App ermöglicht es den mehr als 50 Schadensrichtern von Aetna, ihre Bemühungen auf Verträge und Schadensfälle zu konzentrieren, die ein übergeordnetes Denken sowie die Koordination zwischen verschiedenen Krankenversicherungsgesellschaften erfordern.
„Es kommt darauf an, dem Endbenutzer ein besseres Erlebnis zu bieten“, sagte Claus Jensen, Chief Technology Officer von Aetna. Die Software wird Aetna dabei helfen, ein besserer Partner für Anbieter und Patienten im Gesundheitsökosystem zu werden. „Wir bezahlen nicht nur Rechnungen und beantworten Fragen am Telefon.“
Aetna schätzt, dass ihnen diese App bis Juli 2019 dabei geholfen hat, jährlich 6 Millionen US-Dollar an Bearbeitungs- und Nacharbeitskosten einzusparen.
Jensens Rat: Konzentrieren Sie sich und nehmen Sie sich Zeit. In einer idealen Welt würden Unternehmen KI implementieren, die sehr Nischenprobleme lösen kann. Jensen sagte, breit angelegte Lösungen seien vage und würden letztendlich scheitern, und wenn Aetna Allzweck-KI in seinem Unternehmen anwendet, werde es mit Sicherheit nicht funktionieren. Darüber hinaus verbrachte Aetna mehrere Monate damit, den Prozess zu instrumentieren, Regeln zu schreiben und die Anwendung zu testen. Jensen sagte, dass viele Menschen nicht die Geduld haben, langsamer zu werden und die Dinge richtig zu machen.
Das obige ist der detaillierte Inhalt vonFünf Erfolgsgeschichten erforschen den Geschäftswert der Verarbeitung natürlicher Sprache. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



Diese Seite berichtete am 27. Juni, dass Jianying eine von FaceMeng Technology, einer Tochtergesellschaft von ByteDance, entwickelte Videobearbeitungssoftware ist, die auf der Douyin-Plattform basiert und grundsätzlich kurze Videoinhalte für Benutzer der Plattform produziert Windows, MacOS und andere Betriebssysteme. Jianying kündigte offiziell die Aktualisierung seines Mitgliedschaftssystems an und führte ein neues SVIP ein, das eine Vielzahl von KI-Schwarztechnologien umfasst, wie z. B. intelligente Übersetzung, intelligente Hervorhebung, intelligente Verpackung, digitale menschliche Synthese usw. Preislich beträgt die monatliche Gebühr für das Clipping von SVIP 79 Yuan, die Jahresgebühr 599 Yuan (Hinweis auf dieser Website: entspricht 49,9 Yuan pro Monat), das fortlaufende Monatsabonnement beträgt 59 Yuan pro Monat und das fortlaufende Jahresabonnement beträgt 499 Yuan pro Jahr (entspricht 41,6 Yuan pro Monat). Darüber hinaus erklärte der Cut-Beamte auch, dass diejenigen, die den ursprünglichen VIP abonniert haben, das Benutzererlebnis verbessern sollen

Verbessern Sie die Produktivität, Effizienz und Genauigkeit der Entwickler, indem Sie eine abrufgestützte Generierung und ein semantisches Gedächtnis in KI-Codierungsassistenten integrieren. Übersetzt aus EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, Autor JanakiramMSV. Obwohl grundlegende KI-Programmierassistenten natürlich hilfreich sind, können sie oft nicht die relevantesten und korrektesten Codevorschläge liefern, da sie auf einem allgemeinen Verständnis der Softwaresprache und den gängigsten Mustern beim Schreiben von Software basieren. Der von diesen Coding-Assistenten generierte Code eignet sich zur Lösung der von ihnen zu lösenden Probleme, entspricht jedoch häufig nicht den Coding-Standards, -Konventionen und -Stilen der einzelnen Teams. Dabei entstehen häufig Vorschläge, die geändert oder verfeinert werden müssen, damit der Code in die Anwendung übernommen wird

Large Language Models (LLMs) werden auf riesigen Textdatenbanken trainiert und erwerben dort große Mengen an realem Wissen. Dieses Wissen wird in ihre Parameter eingebettet und kann dann bei Bedarf genutzt werden. Das Wissen über diese Modelle wird am Ende der Ausbildung „verdinglicht“. Am Ende des Vortrainings hört das Modell tatsächlich auf zu lernen. Richten Sie das Modell aus oder verfeinern Sie es, um zu erfahren, wie Sie dieses Wissen nutzen und natürlicher auf Benutzerfragen reagieren können. Aber manchmal reicht Modellwissen nicht aus, und obwohl das Modell über RAG auf externe Inhalte zugreifen kann, wird es als vorteilhaft angesehen, das Modell durch Feinabstimmung an neue Domänen anzupassen. Diese Feinabstimmung erfolgt mithilfe von Eingaben menschlicher Annotatoren oder anderer LLM-Kreationen, wobei das Modell auf zusätzliches Wissen aus der realen Welt trifft und dieses integriert

Um mehr über AIGC zu erfahren, besuchen Sie bitte: 51CTOAI.x Community https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou unterscheidet sich von der traditionellen Fragendatenbank, die überall im Internet zu sehen ist erfordert einen Blick über den Tellerrand hinaus. Large Language Models (LLMs) gewinnen in den Bereichen Datenwissenschaft, generative künstliche Intelligenz (GenAI) und künstliche Intelligenz zunehmend an Bedeutung. Diese komplexen Algorithmen verbessern die menschlichen Fähigkeiten, treiben Effizienz und Innovation in vielen Branchen voran und werden zum Schlüssel für Unternehmen, um wettbewerbsfähig zu bleiben. LLM hat ein breites Anwendungsspektrum und kann in Bereichen wie der Verarbeitung natürlicher Sprache, der Textgenerierung, der Spracherkennung und Empfehlungssystemen eingesetzt werden. Durch das Lernen aus großen Datenmengen ist LLM in der Lage, Text zu generieren

Maschinelles Lernen ist ein wichtiger Zweig der künstlichen Intelligenz, der Computern die Möglichkeit gibt, aus Daten zu lernen und ihre Fähigkeiten zu verbessern, ohne explizit programmiert zu werden. Maschinelles Lernen hat ein breites Anwendungsspektrum in verschiedenen Bereichen, von der Bilderkennung und der Verarbeitung natürlicher Sprache bis hin zu Empfehlungssystemen und Betrugserkennung, und es verändert unsere Lebensweise. Im Bereich des maschinellen Lernens gibt es viele verschiedene Methoden und Theorien, von denen die fünf einflussreichsten Methoden als „Fünf Schulen des maschinellen Lernens“ bezeichnet werden. Die fünf Hauptschulen sind die symbolische Schule, die konnektionistische Schule, die evolutionäre Schule, die Bayes'sche Schule und die Analogieschule. 1. Der Symbolismus, auch Symbolismus genannt, betont die Verwendung von Symbolen zum logischen Denken und zum Ausdruck von Wissen. Diese Denkrichtung glaubt, dass Lernen ein Prozess der umgekehrten Schlussfolgerung durch das Vorhandene ist

Herausgeber | Der Frage-Antwort-Datensatz (QA) von ScienceAI spielt eine entscheidende Rolle bei der Förderung der Forschung zur Verarbeitung natürlicher Sprache (NLP). Hochwertige QS-Datensätze können nicht nur zur Feinabstimmung von Modellen verwendet werden, sondern auch effektiv die Fähigkeiten großer Sprachmodelle (LLMs) bewerten, insbesondere die Fähigkeit, wissenschaftliche Erkenntnisse zu verstehen und zu begründen. Obwohl es derzeit viele wissenschaftliche QS-Datensätze aus den Bereichen Medizin, Chemie, Biologie und anderen Bereichen gibt, weisen diese Datensätze immer noch einige Mängel auf. Erstens ist das Datenformular relativ einfach, die meisten davon sind Multiple-Choice-Fragen. Sie sind leicht auszuwerten, schränken jedoch den Antwortauswahlbereich des Modells ein und können die Fähigkeit des Modells zur Beantwortung wissenschaftlicher Fragen nicht vollständig testen. Im Gegensatz dazu offene Fragen und Antworten

Herausgeber |. KX Im Bereich der Arzneimittelforschung und -entwicklung ist die genaue und effektive Vorhersage der Bindungsaffinität von Proteinen und Liganden für das Arzneimittelscreening und die Arzneimitteloptimierung von entscheidender Bedeutung. Aktuelle Studien berücksichtigen jedoch nicht die wichtige Rolle molekularer Oberflächeninformationen bei Protein-Ligand-Wechselwirkungen. Auf dieser Grundlage schlugen Forscher der Universität Xiamen ein neuartiges Framework zur multimodalen Merkmalsextraktion (MFE) vor, das erstmals Informationen über Proteinoberfläche, 3D-Struktur und -Sequenz kombiniert und einen Kreuzaufmerksamkeitsmechanismus verwendet, um verschiedene Modalitäten zu vergleichen Ausrichtung. Experimentelle Ergebnisse zeigen, dass diese Methode bei der Vorhersage von Protein-Ligand-Bindungsaffinitäten Spitzenleistungen erbringt. Darüber hinaus belegen Ablationsstudien die Wirksamkeit und Notwendigkeit der Proteinoberflächeninformation und der multimodalen Merkmalsausrichtung innerhalb dieses Rahmens. Verwandte Forschungen beginnen mit „S

Laut Nachrichten dieser Website vom 1. August hat SK Hynix heute (1. August) einen Blogbeitrag veröffentlicht, in dem es ankündigt, dass es am Global Semiconductor Memory Summit FMS2024 teilnehmen wird, der vom 6. bis 8. August in Santa Clara, Kalifornien, USA, stattfindet viele neue Technologien Generation Produkt. Einführung des Future Memory and Storage Summit (FutureMemoryandStorage), früher Flash Memory Summit (FlashMemorySummit), hauptsächlich für NAND-Anbieter, im Zusammenhang mit der zunehmenden Aufmerksamkeit für die Technologie der künstlichen Intelligenz wurde dieses Jahr in Future Memory and Storage Summit (FutureMemoryandStorage) umbenannt Laden Sie DRAM- und Speicheranbieter und viele weitere Akteure ein. Neues Produkt SK Hynix wurde letztes Jahr auf den Markt gebracht
