Heim häufiges Problem Einführung in OpenAI und Microsoft Sentinel

Einführung in OpenAI und Microsoft Sentinel

Apr 13, 2023 pm 12:07 PM
openai 逻辑模型

Willkommen zu unserer Serie über OpenAI und Microsoft Sentinel! Große Sprachmodelle oder LLMs wie die GPT3-Familie von OpenAI erobern die öffentliche Vorstellungskraft mit innovativen Anwendungsfällen wie Textzusammenfassung, menschenähnlichen Gesprächen, Code-Analyse und -Debugging und vielen anderen Beispielen. Wir haben gesehen, wie ChatGPT Drehbücher und Gedichte schrieb, Musik komponierte, Essays schrieb und sogar Computercode von einer Sprache in eine andere übersetzte.

Was wäre, wenn wir dieses unglaubliche Potenzial nutzen könnten, um Einsatzkräfte in Sicherheitszentralen zu unterstützen? Natürlich können wir das – und es ist ganz einfach! Microsoft Sentinel enthält bereits einen integrierten Connector für OpenAI GPT3-Modelle, den wir in unseren Automatisierungs-Playbooks implementieren können, die auf Azure Logic Apps basieren. Diese leistungsstarken Workflows lassen sich einfach schreiben und in den SOC-Betrieb integrieren. Heute werfen wir einen Blick auf den OpenAI-Connector und untersuchen einige seiner konfigurierbaren Parameter anhand eines einfachen Anwendungsfalls: der Beschreibung einer MITRE ATT&CK-Richtlinie im Zusammenhang mit Sentinel-Ereignissen.

Bevor wir beginnen, besprechen wir einige Voraussetzungen:

  • Wenn Sie noch keine Microsoft Sentinel-Instanz haben, können Sie eine mit Ihrem kostenlosen Azure-Konto erstellen und der Schnellstartanleitung „Erste Schritte mit Sentinel“ folgen.
  • Wir werden vorab aufgezeichnete Daten aus dem Microsoft Sentinel Training Lab verwenden, um unser Playbook zu testen.
  • Sie benötigen außerdem ein persönliches OpenAI-Konto mit einem API-Schlüssel für die GPT3-Verbindung.
  • Ich empfehle außerdem dringend, einen Blick auf Antonio Formatos hervorragenden Blog zum Umgang mit Ereignissen mit ChatGPT und Sentinel zu werfen, in dem Antonio ein sehr nützliches Allzweckhandbuch vorstellt, das bisher zur Referenz für fast alle OpenAI-Modellimplementierungen in Sentinel geworden ist.

Wir beginnen mit einem einfachen Vorfall-Trigger-Playbook (Sentinel > Automatisierung > Erstellen > Playbook mit Vorfall-Trigger).

Einführung in OpenAI und Microsoft Sentinel

Wählen Sie Ihr Abonnement und Ihre Ressourcengruppe aus, fügen Sie einen Skriptnamen hinzu und wechseln Sie zur Registerkarte „Verbindungen“. Sie sollten Microsoft Sentinel mit einer oder zwei Authentifizierungsoptionen sehen – in diesem Beispiel verwende ich Managed Identity – aber wenn Sie noch keine Verbindungen haben, können Sie auch eine Sentinel-Verbindung im Logic Apps Designer hinzufügen.

Einführung in OpenAI und Microsoft Sentinel

Sehen Sie sich das Playbook an und erstellen Sie es. Nach ein paar Sekunden wird die Ressource erfolgreich bereitgestellt und führt uns zum Logic App Designer-Canvas:

Einführung in OpenAI und Microsoft Sentinel

Fügen wir unseren OpenAI-Connector hinzu. Klicken Sie auf „Neuer Schritt“ und geben Sie „OpenAI“ in das Suchfeld ein. Sie sehen den Konnektor im oberen Bereich und zwei Aktionen darunter: „Bild erstellen“ und „GPT3-Tipp vervollständigen“:

Einführung in OpenAI und Microsoft Sentinel

Wählen Sie „GPT3-Tipp vervollständigen“. Anschließend werden Sie im folgenden Dialog aufgefordert, eine Verbindung zur OpenAI-API herzustellen. Wenn Sie es noch nicht getan haben, erstellen Sie einen Schlüssel unter https://platform.openai.com/account/api-keys und bewahren Sie ihn an einem sicheren Ort auf!

Einführung in OpenAI und Microsoft Sentinel

Stellen Sie sicher, dass Sie die Anweisungen genau befolgen, wenn Sie den OpenAI-API-Schlüssel hinzufügen – er erfordert das Wort „Bearer“, gefolgt von einem Leerzeichen und dann dem Schlüssel selbst:

Einführung in OpenAI und Microsoft Sentinel

Erfolgreich! Wir haben jetzt die GPT3-Textvervollständigung für unsere Eingabeaufforderung bereit. Wir möchten, dass das KI-Modell MITRE ATT&CK-Strategien und -Techniken im Zusammenhang mit Sentinel-Ereignissen interpretiert. Schreiben wir also eine einfache Eingabeaufforderung mit dynamischen Inhalten, um Ereignisstrategien von Sentinel einzufügen.

Einführung in OpenAI und Microsoft Sentinel

Wir sind fast fertig! Speichern Sie Ihre Logik-App und gehen Sie zu Microsoft Sentinel Events, um sie zu testen. Da ich in meiner Instanz Testdaten aus dem Microsoft Sentinel Training Lab habe, führe ich dieses Playbook gegen Ereignisse aus, die durch Warnungen böswilliger Posteingangsregeln ausgelöst werden.

Einführung in OpenAI und Microsoft Sentinel

Sie fragen sich vielleicht, warum wir in unserem Playbook keine zweite Aktion konfiguriert haben, um einen Kommentar oder eine Aufgabe mit einem Ergebnis hinzuzufügen. Wir werden es schaffen – aber zuerst wollen wir sicherstellen, dass unsere Eingabeaufforderungen gute Inhalte vom KI-Modell zurückgeben. Kehren Sie zum Playbook zurück und öffnen Sie die Übersicht in einem neuen Tab. In Ihrem Laufverlauf sollte ein Element angezeigt werden, hoffentlich mit einem grünen Häkchen:

Einführung in OpenAI und Microsoft Sentinel

Klicken Sie auf das Element, um Details zur ausgeführten Logik-App anzuzeigen. Wir können jeden Operationsblock erweitern, um detaillierte Eingabe- und Ausgabeparameter anzuzeigen:

Einführung in OpenAI und Microsoft Sentinel

Unsere GPT3-Operation wurde in nur zwei Sekunden erfolgreich abgeschlossen. Klicken wir auf den Aktionsblock, um ihn zu erweitern und die vollständigen Details seiner Ein- und Ausgänge anzuzeigen:

Einführung in OpenAI und Microsoft Sentinel

Schauen wir uns das Feld „Auswählen“ im Abschnitt „Ausgänge“ genauer an. Hier gibt GPT3 den Abschlusstext zusammen mit dem Abschlussstatus und etwaigen Fehlercodes zurück. Ich habe den vollständigen Text der Choices-Ausgabe in Visual Studio Code kopiert:

Einführung in OpenAI und Microsoft Sentinel

Sieht bisher gut aus! GPT3 erweitert die MITRE-Definition von „Verteidigungsumgehung“ korrekt. Bevor wir dem Playbook eine logische Aktion hinzufügen, um mit diesem Antworttext einen Ereigniskommentar zu erstellen, schauen wir uns noch einmal die Parameter der GPT3-Aktion selbst an. Es gibt insgesamt neun Parameter in der OpenAI-Textvervollständigungsaktion, Engine-Auswahl und Hinweise nicht mitgerechnet:

Einführung in OpenAI und Microsoft Sentinel

Was bedeuten diese und wie optimieren wir sie, um die besten Ergebnisse zu erzielen? Um uns zu helfen, die Auswirkungen jedes Parameters auf die Ergebnisse zu verstehen, gehen wir zum OpenAI API Playground. Wir können die genaue Eingabeaufforderung in das Eingabefeld einfügen, in dem die Logik-App ausgeführt wird. Bevor wir jedoch auf „Senden“ klicken, möchten wir sicherstellen, dass die Parameter übereinstimmen. Hier ist eine kurze Tabelle zum Vergleich der Parameternamen zwischen Azure Logic App OpenAI Connector und OpenAI Playground:

Azure Logic App Connector OpenAI Playground Erklärung
Engine Model generiert das fertige Modell. Wir können im OpenAI-Connector Leonardo da Vinci (neu), Leonardo da Vinci (alt), Curie, Babbage oder Ada auswählen, entsprechend „text-davinci-003“, „text-davinci-002“, „text bzw. -curie“. -001‘, ‚text-babbage-001‘ und ‚text-ada-001‘ in Playground.
n NA Wie viele Vervollständigungen für jede Eingabeaufforderung generiert werden. Dies entspricht der mehrmaligen Eingabe der Eingabeaufforderung im Playground.
Best (gleich) Generieren Sie mehrere Vervollständigungen und geben Sie die beste zurück. Mit Vorsicht verwenden – das kostet viele Token!
Temperatur (gleich) definiert die Zufälligkeit (oder Kreativität) der Antwort. Auf 0 gesetzt, um eine hochdeterministische, wiederholte sofortige Vervollständigung zu erreichen, bei der das Modell immer seine sicherste Wahl zurückgibt. Stellen Sie den Wert auf 1 ein, um maximale kreative Reaktionen mit mehr Zufälligkeit zu erzielen, oder auf Wunsch irgendwo dazwischen.
Max. Tokens Max. Länge Maximale Länge der ChatGPT-Antwort, angegeben in Token. Ein Token besteht ungefähr aus vier Zeichen. ChatGPT verwendet Token-Preise; zum Zeitpunkt des Schreibens kosten 1000 Token 0,002 $. Die Kosten eines API-Aufrufs umfassen die angedeutete Tokenlänge zusammen mit der Antwort. Wenn Sie also die niedrigsten Kosten pro Antwort beibehalten möchten, subtrahieren Sie die angedeutete Tokenlänge von 1000, um die Antwort zu begrenzen.
Frequenzstrafe (gleich) Zahl im Bereich von 0 bis 2. Je höher der Wert, desto geringer ist die Wahrscheinlichkeit, dass das Modell die Zeile wörtlich wiederholt (es wird versuchen, Synonyme oder Neuformulierungen der Zeile zu finden).
Es gibt eine Strafe (gleich) Eine Zahl zwischen 0 und 2. Je höher der Wert, desto geringer ist die Wahrscheinlichkeit, dass das Modell Themen wiederholt, die bereits in der Antwort erwähnt wurden.
TOP (gleich) Eine andere Möglichkeit, die Antwort-„Kreativität“ einzurichten, wenn Sie die Temperatur nicht verwenden. Dieser Parameter begrenzt die möglichen Antwort-Tokens basierend auf der Wahrscheinlichkeit; wenn er auf 1 gesetzt ist, werden alle Tokens berücksichtigt, aber kleinere Werte reduzieren die Menge möglicher Antworten auf die höchsten X %.
Benutzer N/A eindeutige Kennung. Wir müssen diesen Parameter nicht festlegen, da unser API-Schlüssel bereits als unsere Kennungszeichenfolge verwendet wird.
Stop Sequenz stoppen Bis zu vier Sequenzen beenden die Reaktion des Modells.

Lassen Sie uns die folgenden OpenAI API Playground-Einstellungen verwenden, um sie an unsere Logikanwendungsoperationen anzupassen:

  • Modell: text-davinci-003
  • Temperatur: 1
  • Maximale Länge: 100

Das erhalten wir aus dem GPT3-Engine-Ergebnis .

Einführung in OpenAI und Microsoft Sentinel

Es sieht so aus, als wäre die Antwort in der Mitte des Satzes abgeschnitten, daher sollten wir den Parameter für die maximale Länge erhöhen. Ansonsten sieht diese Antwort ziemlich gut aus. Wir verwenden den höchstmöglichen Temperaturwert – was passiert, wenn wir die Temperatur senken, um eine sicherere Reaktion zu erhalten? Nehmen wir zum Beispiel eine Temperatur von Null:

Einführung in OpenAI und Microsoft Sentinel

Bei Temperatur = 0 erhalten wir fast das exakt gleiche Ergebnis, egal wie oft wir diese Eingabeaufforderung erneut generieren. Dies funktioniert gut, wenn wir GPT3 bitten, technische Begriffe zu definieren. Es sollte keinen großen Unterschied darin geben, was „defensive Umgehung“ als MITRE ATT&CK-Taktik bedeutet. Wir können die Lesbarkeit von Antworten verbessern, indem wir eine Häufigkeitsstrafe hinzufügen, um die Tendenz des Modells zur Wiederverwendung derselben Wörter („technisches Like“) zu verringern. Erhöhen wir den Häufigkeitsabzug auf maximal 2:

Einführung in OpenAI und Microsoft Sentinel

Wir haben bisher nur die neuesten da Vinci-Modelle verwendet, um Dinge schnell zu erledigen. Was passiert, wenn wir auf eines der schnelleren und günstigeren OpenAI-Modelle wie Curie, Babbage oder Ada umsteigen? Ändern wir das Modell in „text-ada-001“ und vergleichen die Ergebnisse:

Einführung in OpenAI und Microsoft Sentinel

Naja… nicht ganz. Versuchen wir es mit Babbage:

Einführung in OpenAI und Microsoft Sentinel

Babbage scheint auch nicht die gewünschten Ergebnisse zu liefern. Vielleicht wäre Curie besser dran?

Einführung in OpenAI und Microsoft Sentinel

Leider erfüllte Curie auch nicht die von Leonardo da Vinci festgelegten Standards. Sie sind sicherlich schnell, aber unser Anwendungsfall, Kontext zu Sicherheitsereignissen hinzuzufügen, basiert nicht auf Reaktionszeiten von weniger als einer Sekunde – die Genauigkeit der Zusammenfassung ist wichtiger. Wir nutzen weiterhin die erfolgreiche Kombination aus Da-Vinci-Modellen, Niedertemperatur- und Hochfrequenz-Bestrafung.

Zurück zu unserer Logik-App. Übertragen wir die Einstellungen, die wir vom Playground entdeckt haben, auf den OpenAI-Aktionsblock:

Einführung in OpenAI und Microsoft Sentinel

Unsere Logik-App muss auch in der Lage sein, Kommentare für unsere Veranstaltungen zu schreiben. Klicken Sie auf „Neuer Schritt“ und wählen Sie „Kommentar zum Ereignis hinzufügen“ aus dem Microsoft Sentinel-Connector:

Einführung in OpenAI und Microsoft Sentinel

Wir müssen nur die ARM-ID des Ereignisses angeben und unsere Kommentarnachricht verfassen. Suchen Sie zunächst im Popup-Menü für dynamische Inhalte nach „Event ARM ID“:

Einführung in OpenAI und Microsoft Sentinel

Als nächstes suchen Sie den „Text“, den wir im vorherigen Schritt ausgegeben haben. Möglicherweise müssen Sie auf „Mehr anzeigen“ klicken, um die Ausgabe anzuzeigen. Der Logic App Designer verpackt unsere Kommentaraktion automatisch in einen „Für jeden“-Logikblock, um Fälle zu verarbeiten, in denen mehrere Vervollständigungen für dieselbe Eingabeaufforderung generiert werden.

Einführung in OpenAI und Microsoft Sentinel

Unsere fertige Logik-App sollte in etwa so aussehen:

Einführung in OpenAI und Microsoft Sentinel

Lass es uns noch einmal testen! Gehen Sie zurück zu diesem Microsoft Sentinel-Ereignis und führen Sie das Playbook aus. Wir sollten einen weiteren erfolgreichen Abschluss in unserem Logik-App-Ausführungsverlauf und einen neuen Kommentar in unserem Ereignisaktivitätsprotokoll erhalten.

Einführung in OpenAI und Microsoft Sentinel

Wenn Sie bisher mit uns in Kontakt geblieben sind, können Sie jetzt OpenAI GPT3 mit Microsoft Sentinel integrieren, was Ihren Sicherheitsuntersuchungen einen Mehrwert verleihen kann. Seien Sie gespannt auf unsere nächste Ausgabe, in der wir weitere Möglichkeiten zur Integration von OpenAI-Modellen in Sentinel besprechen und so Workflows freischalten, die Ihnen dabei helfen können, das Beste aus Ihrer Sicherheitsplattform herauszuholen!

Das obige ist der detaillierte Inhalt vonEinführung in OpenAI und Microsoft Sentinel. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

R.E.P.O. Energiekristalle erklärten und was sie tun (gelber Kristall)
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Beste grafische Einstellungen
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. So reparieren Sie Audio, wenn Sie niemanden hören können
1 Monate vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Chat -Befehle und wie man sie benutzt
1 Monate vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Ein neues Programmierparadigma, wenn Spring Boot auf OpenAI trifft Ein neues Programmierparadigma, wenn Spring Boot auf OpenAI trifft Feb 01, 2024 pm 09:18 PM

Im Jahr 2023 ist die KI-Technologie zu einem heißen Thema geworden und hat enorme Auswirkungen auf verschiedene Branchen, insbesondere im Programmierbereich. Die Bedeutung der KI-Technologie wird den Menschen zunehmend bewusst, und die Spring-Community bildet da keine Ausnahme. Mit der kontinuierlichen Weiterentwicklung der GenAI-Technologie (General Artificial Intelligence) ist es entscheidend und dringend geworden, die Erstellung von Anwendungen mit KI-Funktionen zu vereinfachen. Vor diesem Hintergrund entstand „SpringAI“ mit dem Ziel, den Prozess der Entwicklung von KI-Funktionsanwendungen zu vereinfachen, ihn einfach und intuitiv zu gestalten und unnötige Komplexität zu vermeiden. Durch „SpringAI“ können Entwickler einfacher Anwendungen mit KI-Funktionen erstellen, wodurch diese einfacher zu verwenden und zu bedienen sind.

Wählen Sie das Einbettungsmodell, das am besten zu Ihren Daten passt: Ein Vergleichstest von OpenAI und mehrsprachigen Open-Source-Einbettungen Wählen Sie das Einbettungsmodell, das am besten zu Ihren Daten passt: Ein Vergleichstest von OpenAI und mehrsprachigen Open-Source-Einbettungen Feb 26, 2024 pm 06:10 PM

OpenAI kündigte kürzlich die Einführung seines Einbettungsmodells embeddingv3 der neuesten Generation an, das seiner Meinung nach das leistungsstärkste Einbettungsmodell mit höherer Mehrsprachenleistung ist. Diese Reihe von Modellen ist in zwei Typen unterteilt: das kleinere Text-Embeddings-3-Small und das leistungsfähigere und größere Text-Embeddings-3-Large. Es werden nur wenige Informationen darüber offengelegt, wie diese Modelle entworfen und trainiert werden, und auf die Modelle kann nur über kostenpflichtige APIs zugegriffen werden. Es gab also viele Open-Source-Einbettungsmodelle. Aber wie schneiden diese Open-Source-Modelle im Vergleich zum Closed-Source-Modell von OpenAI ab? In diesem Artikel wird die Leistung dieser neuen Modelle empirisch mit Open-Source-Modellen verglichen. Wir planen, Daten zu erstellen

Posthume Arbeit des OpenAI Super Alignment Teams: Zwei große Modelle spielen ein Spiel und die Ausgabe wird verständlicher Posthume Arbeit des OpenAI Super Alignment Teams: Zwei große Modelle spielen ein Spiel und die Ausgabe wird verständlicher Jul 19, 2024 am 01:29 AM

Wenn die Antwort des KI-Modells überhaupt unverständlich ist, würden Sie es wagen, sie zu verwenden? Da maschinelle Lernsysteme in immer wichtigeren Bereichen eingesetzt werden, wird es immer wichtiger zu zeigen, warum wir ihren Ergebnissen vertrauen können und wann wir ihnen nicht vertrauen sollten. Eine Möglichkeit, Vertrauen in die Ausgabe eines komplexen Systems zu gewinnen, besteht darin, vom System zu verlangen, dass es eine Interpretation seiner Ausgabe erstellt, die für einen Menschen oder ein anderes vertrauenswürdiges System lesbar ist, d. h. so vollständig verständlich, dass mögliche Fehler erkannt werden können gefunden. Um beispielsweise Vertrauen in das Justizsystem aufzubauen, verlangen wir von den Gerichten, dass sie klare und lesbare schriftliche Stellungnahmen abgeben, die ihre Entscheidungen erläutern und stützen. Für große Sprachmodelle können wir auch einen ähnlichen Ansatz verfolgen. Stellen Sie bei diesem Ansatz jedoch sicher, dass das Sprachmodell generiert wird

Der Rust-basierte Zed-Editor ist Open Source und bietet integrierte Unterstützung für OpenAI und GitHub Copilot Der Rust-basierte Zed-Editor ist Open Source und bietet integrierte Unterstützung für OpenAI und GitHub Copilot Feb 01, 2024 pm 02:51 PM

Autor丨Zusammengestellt von TimAnderson丨Produziert von Noah|51CTO Technology Stack (WeChat-ID: blog51cto) Das Zed-Editor-Projekt befindet sich noch in der Vorabversionsphase und wurde unter AGPL-, GPL- und Apache-Lizenzen als Open Source bereitgestellt. Der Editor zeichnet sich durch hohe Leistung und mehrere KI-gestützte Optionen aus, ist jedoch derzeit nur auf der Mac-Plattform verfügbar. Nathan Sobo erklärte in einem Beitrag, dass in der Codebasis des Zed-Projekts auf GitHub der Editor-Teil unter der GPL lizenziert ist, die serverseitigen Komponenten unter der AGPL lizenziert sind und der GPUI-Teil (GPU Accelerated User) die Schnittstelle übernimmt Apache2.0-Lizenz. GPUI ist ein vom Zed-Team entwickeltes Produkt

Warten Sie nicht auf OpenAI, sondern darauf, dass Open-Sora vollständig Open Source ist Warten Sie nicht auf OpenAI, sondern darauf, dass Open-Sora vollständig Open Source ist Mar 18, 2024 pm 08:40 PM

Vor nicht allzu langer Zeit wurde OpenAISora mit seinen erstaunlichen Videogenerierungseffekten schnell populär und stach aus der Masse der literarischen Videomodelle hervor und rückte in den Mittelpunkt der weltweiten Aufmerksamkeit. Nach der Einführung des Sora-Trainings-Inferenzreproduktionsprozesses mit einer Kostenreduzierung von 46 % vor zwei Wochen hat das Colossal-AI-Team das weltweit erste Sora-ähnliche Architektur-Videogenerierungsmodell „Open-Sora1.0“ vollständig als Open-Source-Lösung bereitgestellt, das das gesamte Spektrum abdeckt Lernen Sie den Trainingsprozess, einschließlich der Datenverarbeitung, aller Trainingsdetails und Modellgewichte, kennen und schließen Sie sich mit globalen KI-Enthusiasten zusammen, um eine neue Ära der Videoerstellung voranzutreiben. Schauen wir uns für einen kleinen Vorgeschmack ein Video einer geschäftigen Stadt an, das mit dem vom Colossal-AI-Team veröffentlichten Modell „Open-Sora1.0“ erstellt wurde. Open-Sora1.0

Microsoft und OpenAI planen, 100 Millionen US-Dollar in humanoide Roboter zu investieren! Internetnutzer rufen Musk an Microsoft und OpenAI planen, 100 Millionen US-Dollar in humanoide Roboter zu investieren! Internetnutzer rufen Musk an Feb 01, 2024 am 11:18 AM

Anfang des Jahres wurde bekannt, dass Microsoft und OpenAI große Geldsummen in ein Startup für humanoide Roboter investieren. Unter anderem plant Microsoft, 95 Millionen US-Dollar zu investieren, und OpenAI wird 5 Millionen US-Dollar investieren. Laut Bloomberg wird das Unternehmen in dieser Runde voraussichtlich insgesamt 500 Millionen US-Dollar einsammeln, und seine Pre-Money-Bewertung könnte 1,9 Milliarden US-Dollar erreichen. Was zieht sie an? Werfen wir zunächst einen Blick auf die Robotik-Erfolge dieses Unternehmens. Dieser Roboter ist ganz in Silber und Schwarz gehalten und ähnelt in seinem Aussehen dem Abbild eines Roboters in einem Hollywood-Science-Fiction-Blockbuster: Jetzt steckt er eine Kaffeekapsel in die Kaffeemaschine: Wenn sie nicht richtig platziert ist, passt sie sich von selbst an menschliche Fernbedienung: Nach einer Weile kann jedoch eine Tasse Kaffee mitgenommen und genossen werden: Haben Sie Familienmitglieder, die es erkannt haben? Ja, dieser Roboter wurde vor einiger Zeit erstellt.

Die lokale Ausführungsleistung des Embedding-Dienstes übertrifft die von OpenAI Text-Embedding-Ada-002, was sehr praktisch ist! Die lokale Ausführungsleistung des Embedding-Dienstes übertrifft die von OpenAI Text-Embedding-Ada-002, was sehr praktisch ist! Apr 15, 2024 am 09:01 AM

Ollama ist ein superpraktisches Tool, mit dem Sie Open-Source-Modelle wie Llama2, Mistral und Gemma problemlos lokal ausführen können. In diesem Artikel werde ich vorstellen, wie man Ollama zum Vektorisieren von Text verwendet. Wenn Sie Ollama nicht lokal installiert haben, können Sie diesen Artikel lesen. In diesem Artikel verwenden wir das Modell nomic-embed-text[2]. Es handelt sich um einen Text-Encoder, der OpenAI text-embedding-ada-002 und text-embedding-3-small bei kurzen und langen Kontextaufgaben übertrifft. Starten Sie den nomic-embed-text-Dienst, wenn Sie o erfolgreich installiert haben

Plötzlich! OpenAI entlässt Ilya-Verbündeten wegen Verdacht auf Informationslecks Plötzlich! OpenAI entlässt Ilya-Verbündeten wegen Verdacht auf Informationslecks Apr 15, 2024 am 09:01 AM

Plötzlich! OpenAI entließ den Mitarbeiter, der Grund: Verdacht auf Informationslecks. Einer davon ist Leopold Aschenbrenner, ein Verbündeter des vermissten Chefwissenschaftlers Ilya und Kernmitglied des Superalignment-Teams. Die andere Person ist auch nicht einfach. Er ist Pavel Izmailov, ein Forscher im LLM-Inferenzteam, der auch im Super-Alignment-Team gearbeitet hat. Es ist unklar, welche Informationen die beiden Männer genau preisgegeben haben. Nachdem die Nachricht bekannt wurde, äußerten sich viele Internetnutzer „ziemlich schockiert“: Ich habe Aschenbrenners Beitrag vor nicht allzu langer Zeit gesehen und hatte das Gefühl, dass er in seiner Karriere auf dem Vormarsch ist. Mit einer solchen Veränderung habe ich nicht gerechnet. Einige Internetnutzer auf dem Bild denken: OpenAI hat Aschenbrenner, I. verloren