Autor |. Wang Hao Geheimdienstforschungsbereich. Bekannte Unternehmen für künstliche Intelligenz wie Twitter, Google, IBM und Baidu haben alle Ethikteams für künstliche Intelligenz gegründet oder Ethikprodukte für künstliche Intelligenz entwickelt. Es ist jedoch bedauerlich, dass die Forschung zur Ethik der künstlichen Intelligenz in China erst spät begonnen hat, und es besteht immer noch eine gewisse Lücke im Vergleich zu anderen Ländern.
Ranking Learning ist eine maschinelle Lerntechnologie, die etwa 2010 auf den Markt kam und in den Bereichen Empfehlungssysteme an Popularität gewonnen hat und Informationsbeschaffung für ein breites Anwendungsspektrum. In den letzten Jahren hat sich das Ranking-Lernen zu einem beliebten Algorithmus-Benchmark für die Ethikforschung im Bereich der künstlichen Intelligenz entwickelt.
Abbildung 1. Wahrscheinlichkeitsverteilung der Anzeigebewertungsunterschiede im MovieLens-Datensatz#🎜 🎜#
Auf der Grundlage von Beobachtungen (Abbildung 1) und statistischer Theorie (statistische Schätzung der Zipf-Verteilung) können wir die folgenden Schlussfolgerungen ziehen: Die Wahrscheinlichkeitsverteilung des Unterschieds in den Bewertungen verschiedener Elemente durch dasselbe Benutzer Direkt proportional zur Bewertungsdifferenz. Wir modifizieren die Verlustfunktion der Wahrscheinlichkeitsmatrixzerlegung und erhalten die Verlustfunktionsformel des neuen Algorithmus, den wir erfunden haben, Pareto Pairwise Ranking:
Setzen wir unsere Beobachtungen in die Verlustfunktionsformel ein, erhalten wir die folgende Verlustfunktionsformel:
#🎜🎜 #Wir Verwenden Sie die stochastische Gradientenabstiegsformel, um den Logarithmus der Verlustfunktion zu lösen und erhalten Sie die folgende Formel:
# 🎜🎜## 🎜🎜#
Abbildung 2 und Abbildung 3 zeigen das Pareto-Ranking-Lernen in MovieLens Testergebnisse für den 1-Millionen-Datensatz. Der Autor des Artikels verglich zehn Empfehlungssystemalgorithmen und stellte fest, dass der Pareto-Ranking-Lernalgorithmus beim Fairness-Index am besten abschneidet.
Abbildung 4 und Abbildung 5 zeigen das Pareto-Ranking-Lernen in Testergebnissen der LDOS-CoMoDa-Datensatz. Der Pareto-Ranking-Lernalgorithmus schneidet beim Fairness-Index immer noch am besten ab.
Das obige ist der detaillierte Inhalt vonPareto-Ranking-Lernen: Ranking-Lernen basierend auf der Fairness des Empfehlungssystems. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!