


Eine Anleitung zum Trainieren von Bildklassifizierungsmodellen mit TensorFlow
Übersetzer |. Chen Jun
Rezensent |. Heutzutage sind Computer dank der kontinuierlichen Iteration von maschinellen Lern- und Deep-Learning-Algorithmen in der Lage, aufgenommene Bilder in großem Maßstab mit sehr hoher Genauigkeit zu klassifizieren. Zu den Anwendungsszenarien solcher fortschrittlichen Algorithmen gehören derzeit: die Interpretation von Lungenscanbildern, um festzustellen, ob sie gesund sind, die Durchführung einer Gesichtserkennung über mobile Geräte und die Unterscheidung verschiedener Arten von Konsumgütern für Einzelhändler.
Im Folgenden werde ich mit Ihnen eine Anwendung von Computer Vision (Computer Vision) – Bildklassifizierung – besprechen und nach und nach zeigen, wie Sie TensorFlow verwenden, um ein Modell anhand eines kleinen Bilddatensatzes zu trainieren.
1, Datensatz und Ziel
In diesem Beispiel verwenden wir den MNIST-Datensatz mit Ziffernbildern von 0 bis 9. Seine Form ist wie in der folgenden Abbildung dargestellt:
Der Zweck des Trainings dieses Modells besteht darin, Bilder unter ihren jeweiligen Bezeichnungen zu klassifizieren, das heißt: sie sind auf entsprechende Zahlen in der Abbildung. Typischerweise stellt eine tiefe neuronale Netzwerkarchitektur eine Eingabe, eine Ausgabe, zwei verborgene Schichten (Hidden Layers) und eine Dropout-Schicht zum Trainieren des Modells bereit. CNN oder Convolutional Neural Network ist die erste Wahl zur Identifizierung größerer Bilder. Es kann relevante Informationen erfassen und gleichzeitig die Eingabemenge reduzieren.
2. Vorbereitung
Übergeben wir zunächst TensorFlow, to_categorical (wird zum Konvertieren numerischer Klassenwerte in andere Kategorien verwendet), Sequential, Flatten, Dense und Verwenden Sie Dropout zum Aufbau einer neuronalen Netzwerkarchitektur, um alle relevanten Codebibliotheken zu importieren. Einige der hier genannten Codebibliotheken sind Ihnen möglicherweise etwas unbekannt. Ich erkläre sie weiter unten im Detail.
3. Hyperparameter
Ich werde den richtigen Satz von Hyperparametern anhand der folgenden Aspekte auswählen:- #🎜 🎜#
- Zuerst definieren wir einige Hyperparameter als Ausgangspunkt. Später können Sie es an unterschiedliche Bedürfnisse anpassen. Hier habe ich 128 als kleinere Losgröße gewählt. Tatsächlich kann die Batch-Größe einen beliebigen Wert annehmen, aber eine Potenz von 2 verbessert oft die Speichereffizienz und sollte daher die erste Wahl sein. Es ist erwähnenswert, dass der Hauptgrund für die Entscheidung über eine geeignete Stapelgröße darin besteht, dass eine zu kleine Stapelgröße die Konvergenz zu umständlich macht, während eine zu große Stapelgröße möglicherweise nicht in den Speicher Ihres Computers passt.
Lassen Sie uns die Anzahl der Epochen (jede Probe im Trainingssatz nimmt an einem Training teil) auf 50 belassen, um ein schnelles Training des Modells zu erreichen. Je niedriger der Epochenwert ist, desto besser eignet er sich für kleine und einfache Datensätze. - Als nächstes müssen Sie eine ausgeblendete Ebene hinzufügen. Hier habe ich 128 Neuronen für jede verborgene Schicht reserviert. Natürlich können Sie auch mit 64 und 32 Neuronen testen. Für dieses Beispiel würde ich nicht empfehlen, höhere Werte für einen einfachen Datensatz wie MINST zu verwenden.
- Sie können verschiedene Lernraten ausprobieren, z. B. 0,01, 0,05 und 0,1. In diesem Fall belasse ich den Wert bei 0,01.
- Für andere Hyperparameter habe ich die Abklingschritte und die Abklingrate auf 2000 bzw. 0,9 gewählt. Und mit fortschreitendem Training können sie dazu genutzt werden, die Lernrate zu reduzieren.
- Hier wähle ich Adamax als Optimierer. Natürlich können Sie auch andere Optimierer wie Adam, RMSProp, SGD usw. wählen.
import tensorflow as tf from tensorflow.keras.utils import to_categorical from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Flatten, Dense, Dropout params = { 'dropout': 0.25, 'batch-size': 128, 'epochs': 50, 'layer-1-size': 128, 'layer-2-size': 128, 'initial-lr': 0.01, 'decay-steps': 2000, 'decay-rate': 0.9, 'optimizer': 'adamax' } mnist = tf.keras.datasets.mnist num_class = 10 # split between train and test sets (x_train, y_train), (x_test, y_test) = mnist.load_data() # reshape and normalize the data x_train = x_train.reshape(60000, 784).astype("float32")/255 x_test = x_test.reshape(10000, 784).astype("float32")/255 # convert class vectors to binary class matrices y_train = to_categorical(y_train, num_class) y_test = to_categorical(y_test, num_class)
Nach dem Login kopieren- 4. Erstellen Sie Trainings- und Testsätze
输出层是我们网络中的最后一层,它是使用Dense() 方法来定义的。需要注意的是,输出层有10个神经元,这对应于类(数字)的数量。
# Model Definition # Get parameters from logged hyperparameters model = Sequential([ Flatten(input_shape=(784, )), Dense(params('layer-1-size'), activatinotallow='relu'), Dense(params('layer-2-size'), activatinotallow='relu'), Dropout(params('dropout')), Dense(10) ]) lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay( initial_learning_rate=experiment.get_parameter('initial-lr'), decay_steps=experiment.get_parameter('decay-steps'), decay_rate=experiment.get_parameter('decay-rate') ) loss_fn = tf.keras.losses.CategoricalCrossentropy(from_logits=True) model.compile(optimizer='adamax', loss=loss_fn, metrics=['accuracy']) model.fit(x_train, y_train, batch_size=experiment.get_parameter('batch-size'), epochs=experiment.get_parameter('epochs'), validation_data=(x_test, y_test),) score = model.evaluate(x_test, y_test) # Log Model model.save('tf-mnist-comet.h5')
6、训练
至此,我们已经定义好了架构。下面让我们用给定的训练数据,来编译和训练神经网络。
首先,我们以初始学习率、衰减步骤和衰减率作为参数,使用ExponentialDecay(指数衰减学习率)来定义学习率计划。
其次,将损失函数定义为CategoricalCrossentropy(用于多类式分类)。
接着,通过将优化器 (即:adamax)、损失函数、以及各项指标(由于所有类都同等重要、且均匀分布,因此我选择了准确性)作为参数,来编译模型。
然后,我们通过使用x_train、y_train、batch_size、epochs和validation_data去调用一个拟合方法,并拟合出模型。
同时,我们调用模型对象的评估方法,以获得模型在不可见数据集上的表现分数。
最后,您可以使用在模型对象上调用的save方法,保存要在生产环境中部署的模型对象。
7、小结
综上所述,我们讨论了为图像分类任务,训练深度神经网络的一些入门级的知识。您可以将其作为熟悉使用神经网络,进行图像分类的一个起点。据此,您可了解到该如何选择正确的参数集、以及架构背后的思考逻辑。
原文链接:https://www.kdnuggets.com/2022/12/guide-train-image-classification-model-tensorflow.html
Das obige ist der detaillierte Inhalt vonEine Anleitung zum Trainieren von Bildklassifizierungsmodellen mit TensorFlow. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



Stellen Sie sich ein Modell der künstlichen Intelligenz vor, das nicht nur die Fähigkeit besitzt, die traditionelle Datenverarbeitung zu übertreffen, sondern auch eine effizientere Leistung zu geringeren Kosten erzielt. Dies ist keine Science-Fiction, DeepSeek-V2[1], das weltweit leistungsstärkste Open-Source-MoE-Modell, ist da. DeepSeek-V2 ist ein leistungsstarkes MoE-Sprachmodell (Mix of Experts) mit den Merkmalen eines wirtschaftlichen Trainings und einer effizienten Inferenz. Es besteht aus 236B Parametern, von denen 21B zur Aktivierung jedes Markers verwendet werden. Im Vergleich zu DeepSeek67B bietet DeepSeek-V2 eine stärkere Leistung, spart gleichzeitig 42,5 % der Trainingskosten, reduziert den KV-Cache um 93,3 % und erhöht den maximalen Generierungsdurchsatz auf das 5,76-fache. DeepSeek ist ein Unternehmen, das sich mit allgemeiner künstlicher Intelligenz beschäftigt

KI verändert tatsächlich die Mathematik. Vor kurzem hat Tao Zhexuan, der diesem Thema große Aufmerksamkeit gewidmet hat, die neueste Ausgabe des „Bulletin of the American Mathematical Society“ (Bulletin der American Mathematical Society) weitergeleitet. Zum Thema „Werden Maschinen die Mathematik verändern?“ äußerten viele Mathematiker ihre Meinung. Der gesamte Prozess war voller Funken, knallhart und aufregend. Der Autor verfügt über eine starke Besetzung, darunter der Fields-Medaillengewinner Akshay Venkatesh, der chinesische Mathematiker Zheng Lejun, der NYU-Informatiker Ernest Davis und viele andere bekannte Wissenschaftler der Branche. Die Welt der KI hat sich dramatisch verändert. Viele dieser Artikel wurden vor einem Jahr eingereicht.

Boston Dynamics Atlas tritt offiziell in die Ära der Elektroroboter ein! Gestern hat sich der hydraulische Atlas einfach „unter Tränen“ von der Bühne der Geschichte zurückgezogen. Heute gab Boston Dynamics bekannt, dass der elektrische Atlas im Einsatz ist. Es scheint, dass Boston Dynamics im Bereich kommerzieller humanoider Roboter entschlossen ist, mit Tesla zu konkurrieren. Nach der Veröffentlichung des neuen Videos wurde es innerhalb von nur zehn Stunden bereits von mehr als einer Million Menschen angesehen. Die alten Leute gehen und neue Rollen entstehen. Das ist eine historische Notwendigkeit. Es besteht kein Zweifel, dass dieses Jahr das explosive Jahr der humanoiden Roboter ist. Netizens kommentierten: Die Weiterentwicklung der Roboter hat dazu geführt, dass die diesjährige Eröffnungsfeier wie Menschen aussieht, und der Freiheitsgrad ist weitaus größer als der von Menschen. Aber ist das wirklich kein Horrorfilm? Zu Beginn des Videos liegt Atlas ruhig auf dem Boden, scheinbar auf dem Rücken. Was folgt, ist atemberaubend

Anfang dieses Monats schlugen Forscher des MIT und anderer Institutionen eine vielversprechende Alternative zu MLP vor – KAN. KAN übertrifft MLP in Bezug auf Genauigkeit und Interpretierbarkeit. Und es kann MLP, das mit einer größeren Anzahl von Parametern ausgeführt wird, mit einer sehr kleinen Anzahl von Parametern übertreffen. Beispielsweise gaben die Autoren an, dass sie KAN nutzten, um die Ergebnisse von DeepMind mit einem kleineren Netzwerk und einem höheren Automatisierungsgrad zu reproduzieren. Konkret verfügt DeepMinds MLP über etwa 300.000 Parameter, während KAN nur etwa 200 Parameter hat. KAN hat eine starke mathematische Grundlage wie MLP und basiert auf dem universellen Approximationssatz, während KAN auf dem Kolmogorov-Arnold-Darstellungssatz basiert. Wie in der folgenden Abbildung gezeigt, hat KAN

Die von Google geförderte Leistung von JAX hat in jüngsten Benchmark-Tests die von Pytorch und TensorFlow übertroffen und belegt bei 7 Indikatoren den ersten Platz. Und der Test wurde nicht auf der TPU mit der besten JAX-Leistung durchgeführt. Obwohl unter Entwicklern Pytorch immer noch beliebter ist als Tensorflow. Aber in Zukunft werden möglicherweise mehr große Modelle auf Basis der JAX-Plattform trainiert und ausgeführt. Modelle Kürzlich hat das Keras-Team drei Backends (TensorFlow, JAX, PyTorch) mit der nativen PyTorch-Implementierung und Keras2 mit TensorFlow verglichen. Zunächst wählen sie eine Reihe von Mainstream-Inhalten aus

Die Zielerkennung ist ein relativ ausgereiftes Problem in autonomen Fahrsystemen, wobei die Fußgängererkennung einer der ersten Algorithmen ist, die eingesetzt werden. In den meisten Arbeiten wurde eine sehr umfassende Recherche durchgeführt. Die Entfernungswahrnehmung mithilfe von Fischaugenkameras für die Rundumsicht ist jedoch relativ wenig untersucht. Aufgrund der großen radialen Verzerrung ist es schwierig, die standardmäßige Bounding-Box-Darstellung in Fischaugenkameras zu implementieren. Um die obige Beschreibung zu vereinfachen, untersuchen wir erweiterte Begrenzungsrahmen-, Ellipsen- und allgemeine Polygondesigns in Polar-/Winkeldarstellungen und definieren eine mIOU-Metrik für die Instanzsegmentierung, um diese Darstellungen zu analysieren. Das vorgeschlagene Modell „fisheyeDetNet“ mit polygonaler Form übertrifft andere Modelle und erreicht gleichzeitig 49,5 % mAP auf dem Valeo-Fisheye-Kameradatensatz für autonomes Fahren

Das neueste Video von Teslas Roboter Optimus ist veröffentlicht und er kann bereits in der Fabrik arbeiten. Bei normaler Geschwindigkeit sortiert es Batterien (Teslas 4680-Batterien) so: Der Beamte hat auch veröffentlicht, wie es bei 20-facher Geschwindigkeit aussieht – auf einer kleinen „Workstation“, pflücken und pflücken und pflücken: Dieses Mal wird es freigegeben. Eines der Highlights Der Vorteil des Videos besteht darin, dass Optimus diese Arbeit in der Fabrik völlig autonom und ohne menschliches Eingreifen während des gesamten Prozesses erledigt. Und aus Sicht von Optimus kann es auch die krumme Batterie aufnehmen und platzieren, wobei der Schwerpunkt auf der automatischen Fehlerkorrektur liegt: In Bezug auf die Hand von Optimus gab der NVIDIA-Wissenschaftler Jim Fan eine hohe Bewertung ab: Die Hand von Optimus ist der fünffingrige Roboter der Welt am geschicktesten. Seine Hände sind nicht nur taktil

In diesem Artikel wird das Problem der genauen Erkennung von Objekten aus verschiedenen Blickwinkeln (z. B. Perspektive und Vogelperspektive) beim autonomen Fahren untersucht, insbesondere wie die Transformation von Merkmalen aus der Perspektive (PV) in den Raum aus der Vogelperspektive (BEV) effektiv ist implementiert über das Modul Visual Transformation (VT). Bestehende Methoden lassen sich grob in zwei Strategien unterteilen: 2D-zu-3D- und 3D-zu-2D-Konvertierung. 2D-zu-3D-Methoden verbessern dichte 2D-Merkmale durch die Vorhersage von Tiefenwahrscheinlichkeiten, aber die inhärente Unsicherheit von Tiefenvorhersagen, insbesondere in entfernten Regionen, kann zu Ungenauigkeiten führen. Während 3D-zu-2D-Methoden normalerweise 3D-Abfragen verwenden, um 2D-Features abzutasten und die Aufmerksamkeitsgewichte der Korrespondenz zwischen 3D- und 2D-Features über einen Transformer zu lernen, erhöht sich die Rechen- und Bereitstellungszeit.
