


Prognose zur Entwicklung künstlicher Intelligenz im Jahr 2023 Wie können Unternehmen KI erfolgreich einführen?
Die Einführung künstlicher Intelligenz (KI) und ihre Auswirkungen auf Unternehmen befinden sich jetzt an einem wichtigen Wendepunkt. Die Akzeptanz von KI nimmt jedes Jahr zu, da Unternehmen die greifbaren Vorteile erleben, die KI mit sich bringt.
Laut einem von PwC veröffentlichten Umfragebericht wird der potenzielle Beitrag von KI zur Weltwirtschaft bis 2030 15,7 Billionen US-Dollar erreichen. Eine aktuelle IBM-Umfrage identifizierte Schlüsselfaktoren, die die Einführung von KI vorantreiben, darunter die Notwendigkeit, Kosten zu senken und Schlüsselprozesse zu automatisieren, steigender Wettbewerbsdruck und veränderte Kundenerwartungen.
Um erfolgreich von KI-Investitionen profitieren zu können, müssen Unternehmensmanager die Entwicklungstrends und -richtungen im KI-Bereich verstehen.
KI-Entwicklungstrendprognose 2023
Da die weltweiten KI-Investitionen weiter zunehmen, müssen die Menschen den Entwicklungstrend von KI im Jahr 2023 und seine möglichen Auswirkungen auf Unternehmen verstehen:
1 große Fortschritte bei Industrieanwendungen
Der Entwicklungsprozess von KI-Modellen ist komplex, mühsam und iterativ, und der Aufbau eines guten Modells erfordert Tage und Tausende von Experimenten. Low-Code-KI-/Data-Science-Plattformen ändern all das und bieten Drag-and-Drop-Schnittstellen, die dabei helfen, Experimente schneller zu erstellen. Intuitive grafische Benutzeroberflächen (GUIs), visuelle Reproduzierbarkeit und Zusammenarbeit sind die größten Vorteile von Low-Code-Plattformen, die es Data-Science-Teams ermöglichen, schnell eine große Anzahl von Experimenten durchzuführen. Low-Code-KI-Plattformen eignen sich auch ideal für die Beförderung von Dateningenieuren und Geschäftsanalysten zu Citizen Data Scientists und verringern so die Abhängigkeit von erfahrenen Datenwissenschaftlern, die in verschiedenen Branchen rar sind.
2. Verteiltes Modelltraining ist der Kern der KI-Modellierung
Das Data-Science-Team muss Experimente an Tausenden von Modellen durchführen. KI-Modelle sind heutzutage mit Millionen von Parametern recht komplex geworden. Und unter der Kontrolle von Low-Code erhöht sich die Fähigkeit, mehrere Experimente gleichzeitig durchzuführen, um ein Vielfaches. Doch um diese Tausenden von Experimenten zu ermöglichen, benötigen Data-Science-Teams ein kostengünstiges Computersystem, das mit der Nachfrage skaliert. Das Training dieser komplexen, speicherintensiven Experimente mit herkömmlichen Methoden stellt eine große Herausforderung dar. Ein durch verteiltes Computing gesteuertes Modelltraining kann zur Lösung dieser Herausforderung beitragen und ist von zentraler Bedeutung für die Ermöglichung einer skalierbaren Unternehmens-KI.
3. Der Einsatz von Machine Learning Operations (MLOps) nimmt rasant zu
McKinsey wies in seinem 2021 veröffentlichten Umfragebericht darauf hin, dass der Einsatz von MLOps für Unternehmen der entscheidende Faktor ist, um erfolgreiche Erträge aus KI zu erzielen. MLOps erfreut sich bei KI-Führungskräften und Datenwissenschaftlern wachsender Beliebtheit, da es maschinelles Lernen von der experimentellen Phase in die Produktion überführt und einen großen Teil des Enterprise Data Science-Prozesses abdeckt. Dies sorgt für eine bessere Governance, wenn Data-Science-Leiter Hunderte von Modellen in der Produktion mithilfe von Funktionen wie Versionskontrolle, schneller Skalierung und mehr verwalten und bereinigen müssen.
4. Vertrauen und Erklärbarkeit von KI
KI wird nicht länger als Blackbox betrachtet. Immer mehr Menschen investieren in KI, um wichtige Geschäftsentscheidungen zu treffen. Daher ist es von entscheidender Bedeutung, die Herausforderung zu meistern, der KI bei der Automatisierung sensibler Prozesse zu vertrauen. Dieses gesamte Szenario hat zur Entstehung erklärbarer KI geführt, die dabei hilft, die Faktoren zu verstehen, die bei der Entscheidungsfindung eine Rolle spielen. Transparenz bei erklärbarer KI ist der Schlüssel zum Aufbau von Vertrauen in KI und zur Steigerung ihrer Akzeptanz.
5. Anwendung von KI in der Cybersicherheit
Da die Komplexität von Cyber-Bedrohungen zunimmt, integrieren Unternehmen KI in ihre Sicherheitslösungen. KI kümmert sich nun um die tägliche Speicherung und den Schutz sensibler Daten und ist der nächste Schritt zur Automatisierung der Prävention und des Schutzes vor Cyber-Bedrohungen. Es wird verwendet, um die Fähigkeiten zur nachrichtendienstlichen Analyse weiter zu verbessern, um potenzielle Bedrohungen oder Muster zu erkennen und die potenziellen Absichten von Cyber-Angreifern zu identifizieren.
Geheimnisse einer erfolgreichen KI-Einführung
Eine Studie von Accenture zeigt, dass Unternehmen, die KI strategisch skalieren, im Vergleich zu Unternehmen, die einen einzigen Proof of Concept anstreben, eine doppelt so hohe Erfolgsquote und dreimal so hohe Erträge erzielen.
Es stellt sich heraus, dass der Return on Investment für Unternehmen in den frühen Phasen der KI-Einführung möglicherweise nicht hoch ist. KI muss im gesamten Unternehmen skaliert werden, um sicherzustellen, dass die Technologie einen wesentlichen Beitrag zum Geschäft leisten kann.
Durch die Integration von KI in Kerngeschäftsprozesse, Arbeitsabläufe und Kundenreisen können ihre täglichen Abläufe und Entscheidungsaufgaben optimiert werden. McKinsey prognostiziert in einem Forschungsbericht, dass Unternehmen, die diesen Ansatz verfolgen, wahrscheinlich einen Wert- und Größenzuwachs erzielen werden, wobei einige sogar ihren Umsatz um etwa 20 % steigern werden.
Erfolgreiche Skalierung von KI
Die Schlüsselfaktoren für eine erfolgreiche Skalierung von KI hängen von bestimmten Faktoren wie Menschen, KI-Software und Computerinfrastruktur ab. Um den Reifegrad der KI zu erhöhen, müssen Unternehmen die Besonderheiten von Datenerkenntnissen verstehen und diese in Geschäftsprozesse integrieren.
Eine der wichtigen Anforderungen besteht darin, ein KI-System einzuführen, das das Tagesgeschäft, wie Zahlungen, Transaktionsvolumen, Verkäufe, effektiv und effizient unterstützen und sogar vierteljährliche Berichte erstellen kann. Menschen in allen Abteilungen des Unternehmens können KI nutzen, um einfach auf Dateneinblicke zuzugreifen, ohne durch eine Abteilung eingeschränkt zu werden. Wenn ein Unternehmen expandiert, kann KI dabei helfen, neue Bereiche zu erkunden oder neue Produkte für bestehende Produkte zu entwickeln.
Fazit
Unternehmen müssen die Vorteile und Möglichkeiten der KI erkunden und einen strategischen Ansatz für ihre KI-Investitionen verfolgen. Durch den Einsatz von KI können Unternehmen nicht nur bestehende Prozesse beschleunigen oder automatisieren, sondern auch neue Chancen nutzen und den Einfluss von KI bei Mitarbeitern, Kunden und Stakeholdern erhöhen.
Das obige ist der detaillierte Inhalt vonPrognose zur Entwicklung künstlicher Intelligenz im Jahr 2023 Wie können Unternehmen KI erfolgreich einführen?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



Bei der Konvertierung von Zeichenfolgen in Objekte in Vue.js wird JSON.Parse () für Standard -JSON -Zeichenfolgen bevorzugt. Bei nicht standardmäßigen JSON-Zeichenfolgen kann die Zeichenfolge durch Verwendung regelmäßiger Ausdrücke verarbeitet und Methoden gemäß dem Format oder dekodierten URL-kodiert reduziert werden. Wählen Sie die entsprechende Methode gemäß dem String -Format aus und achten Sie auf Sicherheits- und Codierungsprobleme, um Fehler zu vermeiden.

Um die Zeitüberschreitung für Vue Axios festzulegen, können wir eine Axios -Instanz erstellen und die Zeitleitungsoption angeben: in globalen Einstellungen: vue.Prototyp. $ Axios = axios.create ({Timeout: 5000}); In einer einzigen Anfrage: this. $ axios.get ('/api/user', {timeout: 10000}).

Es gibt viele Gründe, warum MySQL Startup fehlschlägt und durch Überprüfung des Fehlerprotokolls diagnostiziert werden kann. Zu den allgemeinen Ursachen gehören Portkonflikte (prüfen Portbelegung und Änderung der Konfiguration), Berechtigungsprobleme (Überprüfen Sie den Dienst Ausführen von Benutzerberechtigungen), Konfigurationsdateifehler (Überprüfung der Parametereinstellungen), Datenverzeichniskorruption (Wiederherstellung von Daten oder Wiederaufbautabellenraum), InnoDB-Tabellenraumprobleme (prüfen IBDATA1-Dateien), Plug-in-Ladeversagen (Überprüfen Sie Fehlerprotokolle). Wenn Sie Probleme lösen, sollten Sie sie anhand des Fehlerprotokolls analysieren, die Hauptursache des Problems finden und die Gewohnheit entwickeln, Daten regelmäßig zu unterstützen, um Probleme zu verhindern und zu lösen.

Verarbeiten Sie 7 Millionen Aufzeichnungen effizient und erstellen Sie interaktive Karten mit Geospatial -Technologie. In diesem Artikel wird untersucht, wie über 7 Millionen Datensätze mithilfe von Laravel und MySQL effizient verarbeitet und in interaktive Kartenvisualisierungen umgewandelt werden können. Erstes Herausforderungsprojektanforderungen: Mit 7 Millionen Datensätzen in der MySQL -Datenbank wertvolle Erkenntnisse extrahieren. Viele Menschen erwägen zunächst Programmiersprachen, aber ignorieren die Datenbank selbst: Kann sie den Anforderungen erfüllen? Ist Datenmigration oder strukturelle Anpassung erforderlich? Kann MySQL einer so großen Datenbelastung standhalten? Voranalyse: Schlüsselfilter und Eigenschaften müssen identifiziert werden. Nach der Analyse wurde festgestellt, dass nur wenige Attribute mit der Lösung zusammenhängen. Wir haben die Machbarkeit des Filters überprüft und einige Einschränkungen festgelegt, um die Suche zu optimieren. Kartensuche basierend auf der Stadt

Zusammenfassung: Es gibt die folgenden Methoden zum Umwandeln von VUE.JS -String -Arrays in Objektarrays: Grundlegende Methode: Verwenden Sie die Kartenfunktion, um regelmäßige formatierte Daten zu entsprechen. Erweitertes Gameplay: Die Verwendung regulärer Ausdrücke kann komplexe Formate ausführen, müssen jedoch sorgfältig geschrieben und berücksichtigt werden. Leistungsoptimierung: In Betracht ziehen die große Datenmenge, asynchrone Operationen oder effiziente Datenverarbeitungsbibliotheken können verwendet werden. Best Practice: Clear Code -Stil, verwenden Sie sinnvolle variable Namen und Kommentare, um den Code präzise zu halten.

Remote Senior Backend Engineer Job Vacant Company: Circle Standort: Remote-Büro-Jobtyp: Vollzeitgehalt: 130.000 bis 140.000 US-Dollar Stellenbeschreibung Nehmen Sie an der Forschung und Entwicklung von Mobilfunkanwendungen und öffentlichen API-bezogenen Funktionen, die den gesamten Lebenszyklus der Softwareentwicklung abdecken. Die Hauptaufgaben erledigen die Entwicklungsarbeit unabhängig von RubyonRails und arbeiten mit dem Front-End-Team von React/Redux/Relay zusammen. Erstellen Sie die Kernfunktionalität und -verbesserungen für Webanwendungen und arbeiten Sie eng mit Designer und Führung während des gesamten funktionalen Designprozesses zusammen. Fördern Sie positive Entwicklungsprozesse und priorisieren Sie die Iterationsgeschwindigkeit. Erfordert mehr als 6 Jahre komplexes Backend für Webanwendungen

Der Artikel führt den Betrieb der MySQL -Datenbank vor. Zunächst müssen Sie einen MySQL -Client wie MySQLworkBench oder Befehlszeilen -Client installieren. 1. Verwenden Sie den Befehl mySQL-uroot-P, um eine Verbindung zum Server herzustellen und sich mit dem Stammkonto-Passwort anzumelden. 2. Verwenden Sie die Erstellung von Createdatabase, um eine Datenbank zu erstellen, und verwenden Sie eine Datenbank aus. 3.. Verwenden Sie CreateTable, um eine Tabelle zu erstellen, Felder und Datentypen zu definieren. 4. Verwenden Sie InsertInto, um Daten einzulegen, Daten abzufragen, Daten nach Aktualisierung zu aktualisieren und Daten nach Löschen zu löschen. Nur indem Sie diese Schritte beherrschen, lernen, mit gemeinsamen Problemen umzugehen und die Datenbankleistung zu optimieren, können Sie MySQL effizient verwenden.

Die MySQL -Leistungsoptimierung muss von drei Aspekten beginnen: Installationskonfiguration, Indexierung und Abfrageoptimierung, Überwachung und Abstimmung. 1. Nach der Installation müssen Sie die my.cnf -Datei entsprechend der Serverkonfiguration anpassen, z. 2. Erstellen Sie einen geeigneten Index, um übermäßige Indizes zu vermeiden und Abfrageanweisungen zu optimieren, z. B. den Befehl Erklärung zur Analyse des Ausführungsplans; 3. Verwenden Sie das eigene Überwachungstool von MySQL (ShowProcessList, Showstatus), um die Datenbankgesundheit zu überwachen und die Datenbank regelmäßig zu sichern und zu organisieren. Nur durch kontinuierliche Optimierung dieser Schritte kann die Leistung der MySQL -Datenbank verbessert werden.
