Inhaltsverzeichnis
ESM2, ein Modell zur Vorhersage atomarer hierarchischer Strukturen
Protein Design „Spezialisierte Programmiersprache“
Machen Sie Proteindesign „wie den Bau eines Gebäudes“
Erforschung der tiefen Grammatik der Proteinproduktion
Heim Technologie-Peripheriegeräte KI Meta lässt ein Sprachmodell mit 15 Milliarden Parametern lernen, „neue' Proteine ​​von Grund auf zu entwerfen! LeCun: Erstaunliche Ergebnisse

Meta lässt ein Sprachmodell mit 15 Milliarden Parametern lernen, „neue' Proteine ​​von Grund auf zu entwerfen! LeCun: Erstaunliche Ergebnisse

Apr 13, 2023 pm 07:22 PM
模型 meta

KI hat im Bereich der Biomedizin erneut neue Fortschritte erzielt. Ja, dieses Mal geht es um Protein.

Der Unterschied besteht darin, dass die KI in der Vergangenheit Proteinstrukturen entdeckte, dieses Mal jedoch begann, Proteinstrukturen selbst zu entwerfen und zu generieren. Wenn er in der Vergangenheit ein „Staatsanwalt“ war, ist es nicht unmöglich zu sagen, dass er sich jetzt zu einem „Schöpfer“ entwickelt hat.

An dieser Studie beteiligt sich das Proteinforschungsteam von FAIR, das Teil des KI-Forschungsinstituts von Meta ist. Als leitender KI-Wissenschaftler, der viele Jahre bei Facebook gearbeitet hat, leitete Yann LeCun auch sofort die Ergebnisse seines eigenen Teams weiter und lobte sie.

Meta lässt ein Sprachmodell mit 15 Milliarden Parametern lernen, „neue Proteine ​​von Grund auf zu entwerfen! LeCun: Erstaunliche Ergebnisse

Diese beiden Artikel über BioRxiv sind Metas „erstaunliche“ Ergebnisse im Bereich Proteindesign/-generierung. Das System verwendet einen simulierten Annealing-Algorithmus, um eine Aminosäuresequenz zu finden, die sich in eine gewünschte Form faltet oder Einschränkungen wie Symmetrie erfüllt.

Meta lässt ein Sprachmodell mit 15 Milliarden Parametern lernen, „neue Proteine ​​von Grund auf zu entwerfen! LeCun: Erstaunliche Ergebnisse

ESM2, ein Modell zur Vorhersage atomarer hierarchischer Strukturen

Sie haben es richtig erraten, die Grundlage dieser Forschung und dieser beiden Veröffentlichungen ist das große Sprachmodell zur Proteinvorhersage und -entdeckung, das vor nicht allzu langer Zeit von Meta vorgeschlagen wurde: ESM2 .

Dies ist ein großes Modell mit 15 Milliarden Parametern. Da das Modell von 8 auf 15 Millionen Parameter skaliert, ermöglichen die aus der internen Darstellung gewonnenen Informationen dreidimensionale Strukturvorhersagen mit atomarer Auflösung.

Meta lässt ein Sprachmodell mit 15 Milliarden Parametern lernen, „neue Proteine ​​von Grund auf zu entwerfen! LeCun: Erstaunliche Ergebnisse

Unter Verwendung großer Sprachmodelle zum Erlernen evolutionärer Muster können genaue Strukturvorhersagen durchgängig direkt aus Proteinsequenzen generiert werden, was schneller als aktuelle Methoden auf dem neuesten Stand der Technik ist und gleichzeitig die Genauigkeit beibehält 60 mal.

Tatsächlich hat Meta mit Hilfe dieser neuen Strukturvorhersagefunktion in nur zwei Wochen mehr als 600 Millionen metagenomische Proteine ​​in der Karte vorhergesagt, wobei ein Cluster von etwa 2000 GPUs zum Einsatz kam.

Alex Rives von Meta AI, der korrespondierende Autor der beiden Artikel, sagte, dass das ESM2-Sprachmodell nicht nur Vielseitigkeit zeigt, die über den Rahmen natürlicher Proteine ​​hinausgeht, sondern auch komplexe und modulare Proteinstrukturen programmierbar generieren kann.

Protein Design „Spezialisierte Programmiersprache“

Wenn ein Arbeiter seine Arbeit gut machen will, muss er zuerst seine Werkzeuge schärfen.

Um das Design und die Generierung von Proteinen effizienter zu gestalten, haben Forscher auf der Grundlage früherer Ergebnisse (hauptsächlich ESM2) auch eine höhere Programmiersprache speziell für das Proteindesign entwickelt.

Papieradresse: https://www.biorxiv.org/content/10.1101/2022.12.21.521526v1

Einer der Hauptleiter dieser Forschung, das Papier „A high-level programming.“ Sprache“ Alex Rives, korrespondierender Autor von „For Generative Protein Design“, sagte in den sozialen Medien, dass dieses Ergebnis es ermöglicht, die Erzeugung großer Proteine ​​und Komplexe mit komplexen und modularen Strukturen zu programmieren.

Brian Hie, einer der Autoren des Papiers und Forscher an der Stanford University, erläuterte auch die wichtigsten Forschungsideen und Ergebnisse dieses Artikels auf Twitter.

Insgesamt beschreibt dieser Artikel, wie generatives maschinelles Lernen den modularen Entwurf komplexer Proteine ​​ermöglicht, der durch höhere Programmiersprachen für das Proteindesign gesteuert wird.

Meta lässt ein Sprachmodell mit 15 Milliarden Parametern lernen, „neue Proteine ​​von Grund auf zu entwerfen! LeCun: Erstaunliche Ergebnisse

Er erklärte, dass die Hauptidee des Artikels nicht darin besteht, sequentielle oder strukturelle Bausteine ​​zu verwenden, sondern die Modularität auf eine höhere Abstraktionsebene zu stellen und die Black-Box-Optimierung spezifische Designs generieren zu lassen. Die Struktur auf atomarer Ebene wird bei jedem Schritt der Optimierung vorhergesagt.

Meta lässt ein Sprachmodell mit 15 Milliarden Parametern lernen, „neue Proteine ​​von Grund auf zu entwerfen! LeCun: Erstaunliche Ergebnisse

Im Vergleich zu früheren Proteindesignmethoden schafft diese neue Idee eine Methode, die es Designern ermöglicht, beliebige, nicht differenzierbare Einschränkungen festzulegen, die von der Angabe von Koordinaten auf atomarer Ebene bis hin zu abstrakten Designplänen für Proteine ​​reichen, wie z symmetrisches Design.

Für die Programmierbarkeit ist es wichtig, dass Einschränkungen modular sind. Die folgende Abbildung zeigt beispielsweise die Situation, in der dieselbe Einschränkung hierarchisch auf zwei Ebenen der Symmetrieprogrammierung angewendet wird.

Diese Einschränkungen lassen sich auch leicht neu kombinieren. Beispielsweise können Einschränkungen für Atomkoordinaten mit Einschränkungen für die Symmetrie kombiniert werden. Oder es können verschiedene Formen der Zwei-Ebenen-Symmetrie kombiniert werden, um eine asymmetrische Verbundstruktur zu programmieren.

Meta lässt ein Sprachmodell mit 15 Milliarden Parametern lernen, „neue Proteine ​​von Grund auf zu entwerfen! LeCun: Erstaunliche Ergebnisse

Brian Hie glaubt, dass dieser Erfolg ein Schritt in Richtung eines kontrollierbareren, regelmäßigeren und ausdrucksstärkeren Proteindesigns ist. Er dankte außerdem Meta AI und anderen Mitarbeitern für ihre gemeinsamen Bemühungen.

Machen Sie Proteindesign „wie den Bau eines Gebäudes“

In der Arbeit glauben die Forscher, dass Proteindesign von der Regelmäßigkeit, Einfachheit und Programmierbarkeit profitieren wird, die ein grundlegender Satz abstrakter Konzepte wie die verwendeten bietet in den Bereichen Bauwesen, Maschinen, Schaltkreise und Computer-Software-Engineering.

Aber im Gegensatz zu diesen künstlichen Kreationen können Proteine ​​nicht in leicht reorganisierte Teile zerlegt werden, da die lokale Struktur der Sequenz mit ihrer Gesamtumgebung verknüpft ist. Beim klassischen Ab-initio-Proteindesign wird versucht, eine Reihe grundlegender Strukturbausteine ​​zu identifizieren und diese dann zu Strukturen höherer Ordnung zusammenzusetzen.

Ähnlicherweise werden beim traditionellen Protein-Engineering häufig Fragmente oder Domänen nativer Proteinsequenzen zu Hybridchimären rekombiniert. Bestehende Ansätze sind jedoch noch nicht in der Lage, die hohe kombinatorische Komplexität zu erreichen, die für echte Programmierbarkeit erforderlich ist.

Dieser Artikel zeigt, dass moderne generative Modelle die klassischen Ziele der Modularität und Programmierbarkeit auf einem neuen Niveau kombinatorischer Komplexität erreichen. Indem sie Modularität und Programmierbarkeit auf eine höhere Abstraktionsebene bringen, schließen generative Modelle die Lücke zwischen menschlicher Intuition und der Generierung spezifischer Sequenzen und Strukturen.

In diesem Fall muss der Proteindesigner nur die Anweisungen auf hoher Ebene neu zusammensetzen, und die Aufgabe, ein Protein zu erhalten, das diese Anweisungen erfüllt, wird auf das generative Modell gelegt.

Forscher schlagen eine Programmiersprache für generatives Proteindesign vor, die es Designern ermöglicht, intuitive, modulare und hierarchische Verfahren zu spezifizieren. High-Level-Programme können durch generative Modelle in Low-Level-Sequenzen und -Strukturen umgewandelt werden. Dieser Ansatz nutzt Fortschritte bei Protein-Sprachmodellen, die Strukturinformationen und Designprinzipien für Proteine ​​erlernen können.

Meta lässt ein Sprachmodell mit 15 Milliarden Parametern lernen, „neue Proteine ​​von Grund auf zu entwerfen! LeCun: Erstaunliche Ergebnisse

Die konkrete Umsetzung in dieser Studie basiert auf einem energiebasierten Erzeugungsmodell, wie in der Abbildung oben dargestellt.

Zuerst spezifiziert ein Proteindesigner ein High-Level-Programm, das aus einer Reihe hierarchisch organisierter Einschränkungen besteht (Abbildung A).

Dieses Programm wird dann zu einer Energiefunktion kompiliert, die die Kompatibilität mit Einschränkungen bewertet, die willkürlich und nicht unterscheidbar sein können (Abbildung B).

Wenden Sie Strukturbeschränkungen an, indem Sie Strukturvorhersagen auf atomarer Ebene (ermöglicht durch Sprachmodelle) in Energiefunktionen integrieren. Dieser Ansatz ist in der Lage, ein breites Spektrum komplexer Designs zu generieren (Abbildung C).

Proteinsequenzen von Grund auf generieren

In der Arbeit „Sprachmodelle verallgemeinern über natürliche Proteine ​​hinaus“ sagte Tom Sercu, der Autor vom MetaAI-Team, dass diese Arbeit hauptsächlich zwei Aufgaben erfüllte.

Meta lässt ein Sprachmodell mit 15 Milliarden Parametern lernen, „neue Proteine ​​von Grund auf zu entwerfen! LeCun: Erstaunliche Ergebnisse

Papieradresse: https://www.biorxiv.org/content/10.1101/2022.12.21.521521v1

Der erste Punkt besteht darin, eine Sequenz für eine gegebene Hauptkettenstruktur zu entwerfen. Mithilfe eines Sprachmodells kann ein erfolgreicher Entwurf für alle Ziele mit einer Erfolgsquote von 19/20 erzielt werden, während ein sequentielles Design ohne die Beteiligung eines Sprachmodells nur eine Erfolgsquote von 1/20 aufweist.

Meta lässt ein Sprachmodell mit 15 Milliarden Parametern lernen, „neue Proteine ​​von Grund auf zu entwerfen! LeCun: Erstaunliche Ergebnisse

Die zweite Aufgabe ist die uneingeschränkte Generation. Das Forschungsteam schlägt eine neue Methode zum Abtasten (Sequenz, Struktur) von Paaren aus einer durch ein Sprachmodell definierten Energielandschaft vor.

Meta lässt ein Sprachmodell mit 15 Milliarden Parametern lernen, „neue Proteine ​​von Grund auf zu entwerfen! LeCun: Erstaunliche Ergebnisse

Das Abtasten durch verschiedene Topologien erhöht wiederum die Erfolgsquote des Experiments (bis zu 71/129 oder 55 %).

Um zu beweisen, dass die vorhergesagte Proteinstruktur die Grenzen natürlicher Proteine ​​überschreitet, durchsuchte das Forschungsteam die vom Sprachmodell generierten Proteinsequenzen in einer Sequenzdatenbank, die alle bekannten natürlichen Proteine ​​abdeckt.

Meta lässt ein Sprachmodell mit 15 Milliarden Parametern lernen, „neue Proteine ​​von Grund auf zu entwerfen! LeCun: Erstaunliche Ergebnisse

Die Ergebnisse zeigen, dass zwischen den beiden keine übereinstimmende Beziehung besteht und die durch natürliche Sequenzen und Sprachmodelle generierten Vorhersagestrukturen unterschiedlich sind.

Sercu gab an, dass die Proteinstruktur allein mithilfe des ESM2-Proteinsprachmodells entworfen werden kann. Das Forschungsteam hat 228 Proteine ​​experimentell getestet, mit einer Erfolgsquote von 67 %!

Meta lässt ein Sprachmodell mit 15 Milliarden Parametern lernen, „neue Proteine ​​von Grund auf zu entwerfen! LeCun: Erstaunliche Ergebnisse

Sercu glaubt, dass nur auf Sequenzen trainierte Proteinsprachmodelle tiefe Muster lernen können, die Sequenz und Struktur verbinden, und dazu verwendet werden können, Proteine ​​von Grund auf zu entwerfen, über den natürlich erforschten Designraum hinaus.

Erforschung der tiefen Grammatik der Proteinproduktion

In der Arbeit erklärten Meta-Forscher, dass das Sprachmodell zwar nur auf Sequenzen trainiert wird, das Modell aber dennoch die tiefe Grammatikstruktur von Proteinen entwerfen und so die Grenzen von durchbrechen kann natürliche Proteine.

Wenn die Quadrate in Abbildung A den Raum darstellen, der aus allen Proteinsequenzen besteht, dann ist die natürliche Proteinsequenz der graue Teil, der einen kleinen Teil davon abdeckt. Um über natürliche Sequenzen hinaus zu verallgemeinern, benötigen Sprachmodelle Zugriff auf zugrunde liegende Entwurfsmuster.

Meta lässt ein Sprachmodell mit 15 Milliarden Parametern lernen, „neue Proteine ​​von Grund auf zu entwerfen! LeCun: Erstaunliche Ergebnisse

Das Forschungsteam muss zwei Dinge tun: erstens das Protein-Rückgrat (de novo) von Grund auf entwerfen und zweitens die Proteinsequenz von Grund auf auf der Grundlage des Rückgrats generieren.

Das Forschungsteam verwendete ein Maskensprachenmodell, um ESM2 zu trainieren, und der Trainingsinhalt umfasste Millionen verschiedener natürlicher Proteine ​​während des Evolutionsprozesses.

Meta lässt ein Sprachmodell mit 15 Milliarden Parametern lernen, „neue Proteine ​​von Grund auf zu entwerfen! LeCun: Erstaunliche Ergebnisse

Nachdem das Sprachmodell trainiert wurde, können Informationen über die Tertiärstruktur des Proteins im internen Aufmerksamkeitszustand des Modells identifiziert werden. Anschließend wandelten die Forscher die Aufmerksamkeit eines Positionspaars in der Proteinsequenz durch lineare Projektion in eine Verteilung der Abstände zwischen Resten um.

Meta lässt ein Sprachmodell mit 15 Milliarden Parametern lernen, „neue Proteine ​​von Grund auf zu entwerfen! LeCun: Erstaunliche Ergebnisse

Die Fähigkeit von Sprachmodellen, Proteinstrukturen vorherzusagen, deutet auf die tieferen Struktursequenzen hin, die natürlichen Proteinsequenzen zugrunde liegen, und auf die Möglichkeit, dass es eine tiefe Grammatik gibt, die vom Modell erlernt werden kann, sagten die Forscher .

Die Ergebnisse zeigen, dass während des Evolutionsprozesses eine große Anzahl von Proteinsequenzen biologische Strukturen und Funktionen enthalten, die die Designstruktur von Proteinen offenbaren. Diese Konstruktion ist vollständig reproduzierbar, indem maschinelle Modelle von Proteinsequenzen gelernt werden.

Meta lässt ein Sprachmodell mit 15 Milliarden Parametern lernen, „neue Proteine ​​von Grund auf zu entwerfen! LeCun: Erstaunliche Ergebnisse

Proteinstrukturen durch Sprachmodelle in 6 Experimenten erfolgreich vorhergesagt

Die Existenz einer tiefen Grammatik über Proteine ​​hinweg erklärt zwei scheinbar widersprüchliche Sätze von Erkenntnissen: Das Verständnis nativer Proteine ​​hängt von den Trainingsdaten ab Das Sprachmodell wiederum kann über bekannte natürliche Proteinfamilien hinaus vorhersagen und erforschen.

Wenn das Skalierungsgesetz von Protein-Sprachmodellen weiterhin wirksam ist, ist zu erwarten, dass sich die Generierungsfähigkeiten von KI-Sprachmodellen weiter verbessern werden.

Das Forschungsteam gab an, dass das Maschinenmodell aufgrund der Existenz der Grundgrammatik der Proteinstruktur seltenere Proteinstrukturen lernen wird, wodurch die Vorhersagefähigkeit und der Erkundungsraum des Modells erweitert werden.

Vor einem Jahr wurde DeepMinds Open-Source-Programm AlphaFold2 in den Bereichen Natur und Wissenschaft eingeführt und überwältigte die akademischen Kreise der Biologie und KI.

Ein Jahr später sind Vorhersagemodelle mit künstlicher Intelligenz entstanden, die häufig Lücken im Bereich der Proteinstruktur schließen.

Wenn Menschen künstlicher Intelligenz Leben einhauchen, ist künstliche Intelligenz dann das letzte Puzzleteil für den Menschen, um das Geheimnis des Lebens zu vervollständigen?

Das obige ist der detaillierte Inhalt vonMeta lässt ein Sprachmodell mit 15 Milliarden Parametern lernen, „neue' Proteine ​​von Grund auf zu entwerfen! LeCun: Erstaunliche Ergebnisse. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

R.E.P.O. Energiekristalle erklärten und was sie tun (gelber Kristall)
2 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
Repo: Wie man Teamkollegen wiederbelebt
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Abenteuer: Wie man riesige Samen bekommt
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Das weltweit leistungsstärkste Open-Source-MoE-Modell ist da, mit chinesischen Fähigkeiten, die mit GPT-4 vergleichbar sind, und der Preis beträgt nur fast ein Prozent von GPT-4-Turbo Das weltweit leistungsstärkste Open-Source-MoE-Modell ist da, mit chinesischen Fähigkeiten, die mit GPT-4 vergleichbar sind, und der Preis beträgt nur fast ein Prozent von GPT-4-Turbo May 07, 2024 pm 04:13 PM

Stellen Sie sich ein Modell der künstlichen Intelligenz vor, das nicht nur die Fähigkeit besitzt, die traditionelle Datenverarbeitung zu übertreffen, sondern auch eine effizientere Leistung zu geringeren Kosten erzielt. Dies ist keine Science-Fiction, DeepSeek-V2[1], das weltweit leistungsstärkste Open-Source-MoE-Modell, ist da. DeepSeek-V2 ist ein leistungsstarkes MoE-Sprachmodell (Mix of Experts) mit den Merkmalen eines wirtschaftlichen Trainings und einer effizienten Inferenz. Es besteht aus 236B Parametern, von denen 21B zur Aktivierung jedes Markers verwendet werden. Im Vergleich zu DeepSeek67B bietet DeepSeek-V2 eine stärkere Leistung, spart gleichzeitig 42,5 % der Trainingskosten, reduziert den KV-Cache um 93,3 % und erhöht den maximalen Generierungsdurchsatz auf das 5,76-fache. DeepSeek ist ein Unternehmen, das sich mit allgemeiner künstlicher Intelligenz beschäftigt

KAN, das MLP ersetzt, wurde durch Open-Source-Projekte auf Faltung erweitert KAN, das MLP ersetzt, wurde durch Open-Source-Projekte auf Faltung erweitert Jun 01, 2024 pm 10:03 PM

Anfang dieses Monats schlugen Forscher des MIT und anderer Institutionen eine vielversprechende Alternative zu MLP vor – KAN. KAN übertrifft MLP in Bezug auf Genauigkeit und Interpretierbarkeit. Und es kann MLP, das mit einer größeren Anzahl von Parametern ausgeführt wird, mit einer sehr kleinen Anzahl von Parametern übertreffen. Beispielsweise gaben die Autoren an, dass sie KAN nutzten, um die Ergebnisse von DeepMind mit einem kleineren Netzwerk und einem höheren Automatisierungsgrad zu reproduzieren. Konkret verfügt DeepMinds MLP über etwa 300.000 Parameter, während KAN nur etwa 200 Parameter hat. KAN hat eine starke mathematische Grundlage wie MLP und basiert auf dem universellen Approximationssatz, während KAN auf dem Kolmogorov-Arnold-Darstellungssatz basiert. Wie in der folgenden Abbildung gezeigt, hat KAN

Hallo, elektrischer Atlas! Der Boston Dynamics-Roboter erwacht wieder zum Leben, seltsame 180-Grad-Bewegungen machen Musk Angst Hallo, elektrischer Atlas! Der Boston Dynamics-Roboter erwacht wieder zum Leben, seltsame 180-Grad-Bewegungen machen Musk Angst Apr 18, 2024 pm 07:58 PM

Boston Dynamics Atlas tritt offiziell in die Ära der Elektroroboter ein! Gestern hat sich der hydraulische Atlas einfach „unter Tränen“ von der Bühne der Geschichte zurückgezogen. Heute gab Boston Dynamics bekannt, dass der elektrische Atlas im Einsatz ist. Es scheint, dass Boston Dynamics im Bereich kommerzieller humanoider Roboter entschlossen ist, mit Tesla zu konkurrieren. Nach der Veröffentlichung des neuen Videos wurde es innerhalb von nur zehn Stunden bereits von mehr als einer Million Menschen angesehen. Die alten Leute gehen und neue Rollen entstehen. Das ist eine historische Notwendigkeit. Es besteht kein Zweifel, dass dieses Jahr das explosive Jahr der humanoiden Roboter ist. Netizens kommentierten: Die Weiterentwicklung der Roboter hat dazu geführt, dass die diesjährige Eröffnungsfeier wie Menschen aussieht, und der Freiheitsgrad ist weitaus größer als der von Menschen. Aber ist das wirklich kein Horrorfilm? Zu Beginn des Videos liegt Atlas ruhig auf dem Boden, scheinbar auf dem Rücken. Was folgt, ist atemberaubend

Das neue erschwingliche Meta Quest 3S VR-Headset erscheint bei FCC, was auf eine baldige Markteinführung hindeutet Das neue erschwingliche Meta Quest 3S VR-Headset erscheint bei FCC, was auf eine baldige Markteinführung hindeutet Sep 04, 2024 am 06:51 AM

Die Meta Connect 2024-Veranstaltung findet vom 25. bis 26. September statt. Bei dieser Veranstaltung wird das Unternehmen voraussichtlich ein neues erschwingliches Virtual-Reality-Headset vorstellen. Gerüchten zufolge handelt es sich bei dem VR-Headset um das Meta Quest 3S, das offenbar auf der FCC-Liste aufgetaucht ist. Dieser Vorschlag

FisheyeDetNet: der erste Zielerkennungsalgorithmus basierend auf einer Fischaugenkamera FisheyeDetNet: der erste Zielerkennungsalgorithmus basierend auf einer Fischaugenkamera Apr 26, 2024 am 11:37 AM

Die Zielerkennung ist ein relativ ausgereiftes Problem in autonomen Fahrsystemen, wobei die Fußgängererkennung einer der ersten Algorithmen ist, die eingesetzt werden. In den meisten Arbeiten wurde eine sehr umfassende Recherche durchgeführt. Die Entfernungswahrnehmung mithilfe von Fischaugenkameras für die Rundumsicht ist jedoch relativ wenig untersucht. Aufgrund der großen radialen Verzerrung ist es schwierig, die standardmäßige Bounding-Box-Darstellung in Fischaugenkameras zu implementieren. Um die obige Beschreibung zu vereinfachen, untersuchen wir erweiterte Begrenzungsrahmen-, Ellipsen- und allgemeine Polygondesigns in Polar-/Winkeldarstellungen und definieren eine mIOU-Metrik für die Instanzsegmentierung, um diese Darstellungen zu analysieren. Das vorgeschlagene Modell „fisheyeDetNet“ mit polygonaler Form übertrifft andere Modelle und erreicht gleichzeitig 49,5 % mAP auf dem Valeo-Fisheye-Kameradatensatz für autonomes Fahren

Tesla-Roboter arbeiten in Fabriken, Musk: Der Freiheitsgrad der Hände wird dieses Jahr 22 erreichen! Tesla-Roboter arbeiten in Fabriken, Musk: Der Freiheitsgrad der Hände wird dieses Jahr 22 erreichen! May 06, 2024 pm 04:13 PM

Das neueste Video von Teslas Roboter Optimus ist veröffentlicht und er kann bereits in der Fabrik arbeiten. Bei normaler Geschwindigkeit sortiert es Batterien (Teslas 4680-Batterien) so: Der Beamte hat auch veröffentlicht, wie es bei 20-facher Geschwindigkeit aussieht – auf einer kleinen „Workstation“, pflücken und pflücken und pflücken: Dieses Mal wird es freigegeben. Eines der Highlights Der Vorteil des Videos besteht darin, dass Optimus diese Arbeit in der Fabrik völlig autonom und ohne menschliches Eingreifen während des gesamten Prozesses erledigt. Und aus Sicht von Optimus kann es auch die krumme Batterie aufnehmen und platzieren, wobei der Schwerpunkt auf der automatischen Fehlerkorrektur liegt: In Bezug auf die Hand von Optimus gab der NVIDIA-Wissenschaftler Jim Fan eine hohe Bewertung ab: Die Hand von Optimus ist der fünffingrige Roboter der Welt am geschicktesten. Seine Hände sind nicht nur taktil

Das erste Open-Source-Modell, das das GPT4o-Niveau übertrifft! Llama 3.1 durchgesickert: 405 Milliarden Parameter, Download-Links und Modellkarten sind verfügbar Das erste Open-Source-Modell, das das GPT4o-Niveau übertrifft! Llama 3.1 durchgesickert: 405 Milliarden Parameter, Download-Links und Modellkarten sind verfügbar Jul 23, 2024 pm 08:51 PM

Machen Sie Ihre GPU bereit! Llama3.1 ist endlich erschienen, aber die Quelle ist nicht offiziell von Meta. Heute gingen die durchgesickerten Nachrichten über das neue Llama-Großmodell auf Reddit viral. Zusätzlich zum Basismodell enthält es auch Benchmark-Ergebnisse von 8B, 70B und den maximalen Parameter von 405B. Die folgende Abbildung zeigt die Vergleichsergebnisse jeder Version von Llama3.1 mit OpenAIGPT-4o und Llama38B/70B. Es ist ersichtlich, dass selbst die 70B-Version in mehreren Benchmarks GPT-4o übertrifft. Bildquelle: https://x.com/mattshumer_/status/1815444612414087294 Offensichtlich Version 3.1 von 8B und 70

Yolov10: Ausführliche Erklärung, Bereitstellung und Anwendung an einem Ort! Yolov10: Ausführliche Erklärung, Bereitstellung und Anwendung an einem Ort! Jun 07, 2024 pm 12:05 PM

1. Einleitung In den letzten Jahren haben sich YOLOs aufgrund ihres effektiven Gleichgewichts zwischen Rechenkosten und Erkennungsleistung zum vorherrschenden Paradigma im Bereich der Echtzeit-Objekterkennung entwickelt. Forscher haben das Architekturdesign, die Optimierungsziele, Datenerweiterungsstrategien usw. von YOLO untersucht und erhebliche Fortschritte erzielt. Gleichzeitig behindert die Verwendung von Non-Maximum Suppression (NMS) bei der Nachbearbeitung die End-to-End-Bereitstellung von YOLO und wirkt sich negativ auf die Inferenzlatenz aus. In YOLOs fehlt dem Design verschiedener Komponenten eine umfassende und gründliche Prüfung, was zu erheblicher Rechenredundanz führt und die Fähigkeiten des Modells einschränkt. Es bietet eine suboptimale Effizienz und ein relativ großes Potenzial zur Leistungsverbesserung. Ziel dieser Arbeit ist es, die Leistungseffizienzgrenze von YOLO sowohl in der Nachbearbeitung als auch in der Modellarchitektur weiter zu verbessern. zu diesem Zweck

See all articles