Deep Learning und das menschliche Gehirn
Deep Learning ist eine Teilmenge des maschinellen Lernens, das das menschliche Gehirn simuliert, indem es große Datenmengen aufnimmt und versucht, daraus zu lernen. In IBMs Definition des Begriffs ermöglicht Deep Learning es Systemen, „Daten zu aggregieren und Vorhersagen mit unglaublicher Genauigkeit zu treffen.“ So unglaublich Deep Learning auch ist, weist IBM ausdrücklich darauf hin, dass es nicht auf die Fähigkeit des menschlichen Gehirns zugreifen kann, Informationen zu verarbeiten und zu lernen .
Deep Learning und DNN (Deep Neural Networks) werden eingesetzt, um komplexe reale Probleme wie Wettervorhersage, Gesichtserkennung und Chatbots zu lösen und andere Arten komplexer Datenanalysen durchzuführen. Laut Allied Market Research wird der globale Deep-Learning-Markt bis 2030 von 6,85 Milliarden US-Dollar im Jahr 2020 auf fast 180 Milliarden US-Dollar anwachsen. Eine weitere Studie von Allied Market Research ergab, dass der globale Markt für neuronale Netze bis 2030 voraussichtlich fast 153 Milliarden US-Dollar erreichen wird, angetrieben durch das Wachstum im Bereich der künstlichen Intelligenz und die steigende Nachfrage nach Daten und fortschrittlichen Analysetools.
Ein besseres Verständnis von Deep Learning wird künftigen Anwendungen künstlicher Intelligenz und auf maschinellem Lernen basierender Technologien zugute kommen, einschließlich vollständig autonomer Fahrzeuge und virtueller Assistenten der nächsten Generation. In Zukunft könnte sich Deep Learning zu unbeaufsichtigtem Lernen entwickeln und mehr Einblicke in die Funktionsweise des menschlichen Gehirns liefern. Es war diese zweite Verfolgung, die Forscher der Universität Glasgow dazu veranlasste, zu untersuchen, wie ähnlich DNNs dem menschlichen Gehirn sind. Nach Angaben der Universität Glasgow ist das derzeitige Verständnis der DNN-Technologie relativ begrenzt und niemand versteht vollständig, wie tiefe neuronale Netze Informationen verarbeiten.
Um das Verständnis der wissenschaftlichen Gemeinschaft weiter zu vertiefen, haben Forscher in der kürzlich veröffentlichten „Algorithmische Äquivalenz zwischen dem Gehirn und seinem DNN-Modell“ eine Methode vorgeschlagen und getestet, um zu verstehen, wie Modelle der künstlichen Intelligenz Informationen im Vergleich zur Methode des Gehirns verarbeiten Vergleich. Ziel ist es herauszufinden, ob DNN-Modelle ähnliche Rechenschritte verwenden, um Dinge wie das menschliche Gehirn zu erkennen. Diese Arbeit identifiziert Ähnlichkeiten und Unterschiede zwischen Modellen der künstlichen Intelligenz und dem menschlichen Gehirn und macht damit einen Schritt in Richtung der Schaffung einer Technologie für künstliche Intelligenz, die Informationen so nah wie möglich an das menschliche Gehirn verarbeitet.
Philippe Schyns, Leiter der Forschungstechnologie an der Universität Glasgow, sagte: „Ein besseres Verständnis darüber, ob das menschliche Gehirn und seine DNN-Modelle Dinge auf die gleiche Weise erkennen, wird präzisere reale Anwendungen mithilfe von DNNs ermöglichen.“ Wir gewinnen ein tieferes Verständnis der Erkennungsmechanismen im menschlichen Gehirn und können dieses Wissen auf DNNs übertragen, was wiederum dazu beitragen wird, die Art und Weise zu verbessern, wie DNNs in Anwendungen wie der Gesichtserkennung verwendet werden, die derzeit nicht immer genau sind
Wenn das Ziel darin besteht, einen möglichst menschenähnlichen Entscheidungsprozess zu schaffen, dann muss Technologie in der Lage sein, Informationen zu verarbeiten und Entscheidungen mindestens so gut wie Menschen zu treffen – im Idealfall sogar besser als Menschen. Am Ende des veröffentlichten Artikels listet der Autor eine Reihe offener Fragen auf, die auf der Forschung basieren, darunter: „Wie sagen DNNs die Vielfalt des menschlichen Entscheidungsverhaltens voraus?“ Dies ist ebenfalls eine Frage, die es wert ist, untersucht zu werden, da nicht jeder damit konfrontiert ist Die gleiche Situation führt dazu, dass alle Eingaben die gleiche Entscheidung treffen – und auf welche Weise würde ein menschlicheres KI-Modell dieser Vielfalt Rechnung tragen?Das obige ist der detaillierte Inhalt vonDeep Learning und das menschliche Gehirn. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



Diese Seite berichtete am 27. Juni, dass Jianying eine von FaceMeng Technology, einer Tochtergesellschaft von ByteDance, entwickelte Videobearbeitungssoftware ist, die auf der Douyin-Plattform basiert und grundsätzlich kurze Videoinhalte für Benutzer der Plattform produziert Windows, MacOS und andere Betriebssysteme. Jianying kündigte offiziell die Aktualisierung seines Mitgliedschaftssystems an und führte ein neues SVIP ein, das eine Vielzahl von KI-Schwarztechnologien umfasst, wie z. B. intelligente Übersetzung, intelligente Hervorhebung, intelligente Verpackung, digitale menschliche Synthese usw. Preislich beträgt die monatliche Gebühr für das Clipping von SVIP 79 Yuan, die Jahresgebühr 599 Yuan (Hinweis auf dieser Website: entspricht 49,9 Yuan pro Monat), das fortlaufende Monatsabonnement beträgt 59 Yuan pro Monat und das fortlaufende Jahresabonnement beträgt 499 Yuan pro Jahr (entspricht 41,6 Yuan pro Monat). Darüber hinaus erklärte der Cut-Beamte auch, dass diejenigen, die den ursprünglichen VIP abonniert haben, das Benutzererlebnis verbessern sollen

Verbessern Sie die Produktivität, Effizienz und Genauigkeit der Entwickler, indem Sie eine abrufgestützte Generierung und ein semantisches Gedächtnis in KI-Codierungsassistenten integrieren. Übersetzt aus EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, Autor JanakiramMSV. Obwohl grundlegende KI-Programmierassistenten natürlich hilfreich sind, können sie oft nicht die relevantesten und korrektesten Codevorschläge liefern, da sie auf einem allgemeinen Verständnis der Softwaresprache und den gängigsten Mustern beim Schreiben von Software basieren. Der von diesen Coding-Assistenten generierte Code eignet sich zur Lösung der von ihnen zu lösenden Probleme, entspricht jedoch häufig nicht den Coding-Standards, -Konventionen und -Stilen der einzelnen Teams. Dabei entstehen häufig Vorschläge, die geändert oder verfeinert werden müssen, damit der Code in die Anwendung übernommen wird

Large Language Models (LLMs) werden auf riesigen Textdatenbanken trainiert und erwerben dort große Mengen an realem Wissen. Dieses Wissen wird in ihre Parameter eingebettet und kann dann bei Bedarf genutzt werden. Das Wissen über diese Modelle wird am Ende der Ausbildung „verdinglicht“. Am Ende des Vortrainings hört das Modell tatsächlich auf zu lernen. Richten Sie das Modell aus oder verfeinern Sie es, um zu erfahren, wie Sie dieses Wissen nutzen und natürlicher auf Benutzerfragen reagieren können. Aber manchmal reicht Modellwissen nicht aus, und obwohl das Modell über RAG auf externe Inhalte zugreifen kann, wird es als vorteilhaft angesehen, das Modell durch Feinabstimmung an neue Domänen anzupassen. Diese Feinabstimmung erfolgt mithilfe von Eingaben menschlicher Annotatoren oder anderer LLM-Kreationen, wobei das Modell auf zusätzliches Wissen aus der realen Welt trifft und dieses integriert

Um mehr über AIGC zu erfahren, besuchen Sie bitte: 51CTOAI.x Community https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou unterscheidet sich von der traditionellen Fragendatenbank, die überall im Internet zu sehen ist erfordert einen Blick über den Tellerrand hinaus. Large Language Models (LLMs) gewinnen in den Bereichen Datenwissenschaft, generative künstliche Intelligenz (GenAI) und künstliche Intelligenz zunehmend an Bedeutung. Diese komplexen Algorithmen verbessern die menschlichen Fähigkeiten, treiben Effizienz und Innovation in vielen Branchen voran und werden zum Schlüssel für Unternehmen, um wettbewerbsfähig zu bleiben. LLM hat ein breites Anwendungsspektrum und kann in Bereichen wie der Verarbeitung natürlicher Sprache, der Textgenerierung, der Spracherkennung und Empfehlungssystemen eingesetzt werden. Durch das Lernen aus großen Datenmengen ist LLM in der Lage, Text zu generieren

Herausgeber | Der Frage-Antwort-Datensatz (QA) von ScienceAI spielt eine entscheidende Rolle bei der Förderung der Forschung zur Verarbeitung natürlicher Sprache (NLP). Hochwertige QS-Datensätze können nicht nur zur Feinabstimmung von Modellen verwendet werden, sondern auch effektiv die Fähigkeiten großer Sprachmodelle (LLMs) bewerten, insbesondere die Fähigkeit, wissenschaftliche Erkenntnisse zu verstehen und zu begründen. Obwohl es derzeit viele wissenschaftliche QS-Datensätze aus den Bereichen Medizin, Chemie, Biologie und anderen Bereichen gibt, weisen diese Datensätze immer noch einige Mängel auf. Erstens ist das Datenformular relativ einfach, die meisten davon sind Multiple-Choice-Fragen. Sie sind leicht auszuwerten, schränken jedoch den Antwortauswahlbereich des Modells ein und können die Fähigkeit des Modells zur Beantwortung wissenschaftlicher Fragen nicht vollständig testen. Im Gegensatz dazu offene Fragen und Antworten

Maschinelles Lernen ist ein wichtiger Zweig der künstlichen Intelligenz, der Computern die Möglichkeit gibt, aus Daten zu lernen und ihre Fähigkeiten zu verbessern, ohne explizit programmiert zu werden. Maschinelles Lernen hat ein breites Anwendungsspektrum in verschiedenen Bereichen, von der Bilderkennung und der Verarbeitung natürlicher Sprache bis hin zu Empfehlungssystemen und Betrugserkennung, und es verändert unsere Lebensweise. Im Bereich des maschinellen Lernens gibt es viele verschiedene Methoden und Theorien, von denen die fünf einflussreichsten Methoden als „Fünf Schulen des maschinellen Lernens“ bezeichnet werden. Die fünf Hauptschulen sind die symbolische Schule, die konnektionistische Schule, die evolutionäre Schule, die Bayes'sche Schule und die Analogieschule. 1. Der Symbolismus, auch Symbolismus genannt, betont die Verwendung von Symbolen zum logischen Denken und zum Ausdruck von Wissen. Diese Denkrichtung glaubt, dass Lernen ein Prozess der umgekehrten Schlussfolgerung durch das Vorhandene ist

Herausgeber | Rettichhaut Seit der Veröffentlichung des leistungsstarken AlphaFold2 im Jahr 2021 verwenden Wissenschaftler Modelle zur Proteinstrukturvorhersage, um verschiedene Proteinstrukturen innerhalb von Zellen zu kartieren, Medikamente zu entdecken und eine „kosmische Karte“ jeder bekannten Proteininteraktion zu zeichnen. Gerade hat Google DeepMind das AlphaFold3-Modell veröffentlicht, das gemeinsame Strukturvorhersagen für Komplexe wie Proteine, Nukleinsäuren, kleine Moleküle, Ionen und modifizierte Reste durchführen kann. Die Genauigkeit von AlphaFold3 wurde im Vergleich zu vielen dedizierten Tools in der Vergangenheit (Protein-Ligand-Interaktion, Protein-Nukleinsäure-Interaktion, Antikörper-Antigen-Vorhersage) deutlich verbessert. Dies zeigt, dass dies innerhalb eines einzigen einheitlichen Deep-Learning-Frameworks möglich ist

Herausgeber |. KX Im Bereich der Arzneimittelforschung und -entwicklung ist die genaue und effektive Vorhersage der Bindungsaffinität von Proteinen und Liganden für das Arzneimittelscreening und die Arzneimitteloptimierung von entscheidender Bedeutung. Aktuelle Studien berücksichtigen jedoch nicht die wichtige Rolle molekularer Oberflächeninformationen bei Protein-Ligand-Wechselwirkungen. Auf dieser Grundlage schlugen Forscher der Universität Xiamen ein neuartiges Framework zur multimodalen Merkmalsextraktion (MFE) vor, das erstmals Informationen über Proteinoberfläche, 3D-Struktur und -Sequenz kombiniert und einen Kreuzaufmerksamkeitsmechanismus verwendet, um verschiedene Modalitäten zu vergleichen Ausrichtung. Experimentelle Ergebnisse zeigen, dass diese Methode bei der Vorhersage von Protein-Ligand-Bindungsaffinitäten Spitzenleistungen erbringt. Darüber hinaus belegen Ablationsstudien die Wirksamkeit und Notwendigkeit der Proteinoberflächeninformation und der multimodalen Merkmalsausrichtung innerhalb dieses Rahmens. Verwandte Forschungen beginnen mit „S
