


Wunderbar! Dieses Python-Datenvisualisierungstool ist leistungsstark!
Mit Altair können Sie mehr Zeit damit verbringen, sich auf die Daten und ihre Bedeutung zu konzentrieren, was ich im Folgenden ausführlich erläutern werde:
Beispiel
Hier ist ein Beispiel für die Verwendung von Altair in JupyterLab zur schnellen Visualisierung und Anzeige eines Datensatzes :
import altair as alt # load a simple dataset as a pandas DataFrame from vega_datasets import data cars = data.cars() alt.Chart(cars).mark_point().encode( x='Horsepower', y='Miles_per_Gallon', color='Origin', )
Eine der einzigartigen Eigenschaften von Altair von Vega-Lite ist die deklarative Syntax, die nicht nur visuell, sondern auch interaktiv ist. Mit einigen Modifikationen am obigen Beispiel können wir ein verknüpftes Histogramm erstellen, das basierend auf der Streudiagrammauswahl gefiltert wird.
import altair as alt from vega_datasets import data source = data.cars() brush = alt.selection(type='interval') points = alt.Chart(source).mark_point().encode( x='Horsepower', y='Miles_per_Gallon', color=alt.condition(brush, 'Origin', alt.value('lightgray')) ).add_selection( brush ) bars = alt.Chart(source).mark_bar().encode( y='Origin', color='Origin', x='count(Origin)' ).transform_filter( brush ) points & bars
Installationsmethode
Altair erfordert die folgenden Abhängigkeiten:
- Pandas
- Traitlets
- IPython
Wenn Sie das Repository geklont haben, führen Sie den folgenden Befehl im Stammverzeichnis des Repositorys aus:
pip install -e .[dev]
Wenn Sie das Repository nicht klonen möchten, können Sie es mit dem folgenden Befehl installieren:
pip install git+https://github.com/altair-viz/altair
Weitere Details finden Sie unter dem Github-Link:
https://github.com/altair-viz/altair
Drei große Vorgänge
Als nächstes werde ich stellen Sie detailliert vor, wie Altair Filter und visuelle Objekte für Gruppierungs- und Zusammenführungsvorgänge erstellt, die als Teil eines explorativen Datenanalyseprozesses verwendet werden können.
Wir erstellen zwei Datenrahmen aus simulierten Daten. Das erste ist die Restaurantbestellung und das zweite ist der Preis des Artikels in der Restaurantbestellung.
# import libraries import numpy as np import pandas as pd import altair as alt import random # mock data orders = pd.DataFrame({ "order_id": np.arange(1,101), "item": np.random.randint(1, 50, size=100), "qty": np.random.randint(1, 10, size=100), "tip": (np.random.random(100) * 10).round(2) }) prices = pd.DataFrame({ "item": np.arange(1,51), "price": (np.random.random(50) * 50).round(2) }) order_type = ["lunch", "dinner"] * 50 random.shuffle(order_type) orders["order_type"] = order_type
Zuerst erstellen wir ein einfaches Diagramm zur Altair-Syntaxstruktur.
alt.Chart(orders).mark_circle(size=50).encode( x="qty", y="tip", color="order_type" ).properties( title = "Tip vs Quantity" )
Grundlegende Altair-Syntax in vier Schritten:
- Übergeben Sie Daten an ein Chart-Objekt, das in Form eines Pandas-Datenrahmens oder einer URL-Zeichenfolge vorliegen kann, die auf eine JSON- oder CSV-Datei verweist.
- Wählen Sie die Art der Visualisierung (z. B. mark_circle, mark_line usw.).
- encode Die Codierungsfunktion gibt an, was in einem bestimmten Datenrahmen dargestellt werden soll. Daher muss alles, was wir in die Kodierungsfunktion schreiben, mit dem Datenrahmen verknüpft sein.
- Verwenden Sie die Eigenschaftenfunktion, um bestimmte Eigenschaften des Diagramms festzulegen.
Stellen Sie sich eine Situation vor, in der wir ein Streudiagramm von Pirce- und Tip-Werten erstellen müssen, die sich in unterschiedlichen Datenrahmen befinden. Eine Möglichkeit besteht darin, die beiden Datenrahmen zusammenzuführen und diese beiden Spalten in einem Streudiagramm zu verwenden.
Altair bietet eine praktischere Methode, die das Auffinden von Spalten in anderen Datenrahmen ermöglicht, ähnlich der Zusammenführungsfunktion von Pandas.
alt.Chart(orders).mark_circle(size=50).encode( x="tip", y="price:Q", color="order_type" ).transform_lookup( lookup="item", from_=alt.LookupData(data=prices, key="item", fields=["price"]) ).properties( title = "Price vs Tip" )
Die transform_lookup-Funktion ähnelt der Merge-Funktion von Pandas. Die zum Abgleich der Beobachtungen verwendeten Spalten (d. h. Zeilen) werden an den Suchparameter übergeben. Der Parameter „Felder“ wird verwendet, um die erforderlichen Spalten aus einem anderen Datenrahmen auszuwählen.
Wir können auch eine Filterkomponente in die Darstellung integrieren, die es uns ermöglicht, Datenpunkte mit Preisen über 10 $ darzustellen.
alt.Chart(orders).mark_circle(size=50).encode( x="tip", y="price:Q", color="order_type" ).transform_lookup( lookup="item", from_=alt.LookupData(data=prices, key="item", fields=["price"]) ).transform_filter( alt.FieldGTPredicate(field='price', gt=10) ).properties( title = "Price vs Tip" )
Zum Filtern wird die Funktion transform_filter verwendet. FieldGTPredicate verarbeitet „Größer als“-Bedingungen.
Neben dem Filtern und Zusammenführen ermöglicht Ihnen Altair auch das Gruppieren von Datenpunkten vor dem Plotten. Wir können beispielsweise ein Balkendiagramm erstellen, das den Durchschnittspreis eines Artikels für jede Bestellart anzeigt. Darüber hinaus können wir dies für Artikel mit einem Preis unter 20 $ tun.
alt.Chart(orders).mark_bar().encode( y="order_type", x="avg_price:Q" ).transform_lookup( lookup="item", from_=alt.LookupData(data=prices, key="item", fields=["price"]) ).transform_filter( alt.FieldLTPredicate(field='price', lt=20) ).transform_aggregate( avg_price = "mean(price)", groupby = ["order_type"] ).properties( height=200, width=300 )
Lassen Sie uns jeden Schritt im Detail erklären:
- transform_lookup: Preis aus Preisdatenrahmen ermitteln.
- transform_filter: Preise unter 20 $ filtern.
- transform_aggregate: Gruppieren Sie Preise nach Auftragstyp und berechnen Sie den Mittelwert.
Fazit
Der Unterschied zwischen Altair und anderen gängigen Visualisierungsbibliotheken besteht darin, dass es Datenanalysekomponenten nahtlos in die Visualisierung integrieren kann, was es zu einem sehr praktischen Datenexplorationstool macht.
Filtern, Zusammenführen und Gruppieren sind für den explorativen Datenanalyseprozess von entscheidender Bedeutung. Mit Altair können Sie alle diese Vorgänge beim Erstellen von Datenvisualisierungen ausführen. In diesem Sinne kann Altair auch als Datenanalysetool betrachtet werden. Wenn Sie interessiert sind, probieren Sie es jetzt aus.
Das obige ist der detaillierte Inhalt vonWunderbar! Dieses Python-Datenvisualisierungstool ist leistungsstark!. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



MySQL hat eine kostenlose Community -Version und eine kostenpflichtige Enterprise -Version. Die Community -Version kann kostenlos verwendet und geändert werden, die Unterstützung ist jedoch begrenzt und für Anwendungen mit geringen Stabilitätsanforderungen und starken technischen Funktionen geeignet. Die Enterprise Edition bietet umfassende kommerzielle Unterstützung für Anwendungen, die eine stabile, zuverlässige Hochleistungsdatenbank erfordern und bereit sind, Unterstützung zu bezahlen. Zu den Faktoren, die bei der Auswahl einer Version berücksichtigt werden, gehören Kritikalität, Budgetierung und technische Fähigkeiten von Anwendungen. Es gibt keine perfekte Option, nur die am besten geeignete Option, und Sie müssen die spezifische Situation sorgfältig auswählen.

Der Artikel führt den Betrieb der MySQL -Datenbank vor. Zunächst müssen Sie einen MySQL -Client wie MySQLworkBench oder Befehlszeilen -Client installieren. 1. Verwenden Sie den Befehl mySQL-uroot-P, um eine Verbindung zum Server herzustellen und sich mit dem Stammkonto-Passwort anzumelden. 2. Verwenden Sie die Erstellung von Createdatabase, um eine Datenbank zu erstellen, und verwenden Sie eine Datenbank aus. 3.. Verwenden Sie CreateTable, um eine Tabelle zu erstellen, Felder und Datentypen zu definieren. 4. Verwenden Sie InsertInto, um Daten einzulegen, Daten abzufragen, Daten nach Aktualisierung zu aktualisieren und Daten nach Löschen zu löschen. Nur indem Sie diese Schritte beherrschen, lernen, mit gemeinsamen Problemen umzugehen und die Datenbankleistung zu optimieren, können Sie MySQL effizient verwenden.

Die Hauptgründe für den Fehler bei MySQL -Installationsfehlern sind: 1. Erlaubnisprobleme, Sie müssen als Administrator ausgeführt oder den Sudo -Befehl verwenden. 2. Die Abhängigkeiten fehlen, und Sie müssen relevante Entwicklungspakete installieren. 3. Portkonflikte müssen Sie das Programm schließen, das Port 3306 einnimmt, oder die Konfigurationsdatei ändern. 4. Das Installationspaket ist beschädigt. Sie müssen die Integrität herunterladen und überprüfen. 5. Die Umgebungsvariable ist falsch konfiguriert und die Umgebungsvariablen müssen korrekt entsprechend dem Betriebssystem konfiguriert werden. Lösen Sie diese Probleme und überprüfen Sie jeden Schritt sorgfältig, um MySQL erfolgreich zu installieren.

Die MySQL -Download -Datei ist beschädigt. Was soll ich tun? Wenn Sie MySQL herunterladen, können Sie die Korruption der Datei begegnen. Es ist heutzutage wirklich nicht einfach! In diesem Artikel wird darüber gesprochen, wie dieses Problem gelöst werden kann, damit jeder Umwege vermeiden kann. Nach dem Lesen können Sie nicht nur das beschädigte MySQL -Installationspaket reparieren, sondern auch ein tieferes Verständnis des Download- und Installationsprozesses haben, um zu vermeiden, dass Sie in Zukunft stecken bleiben. Lassen Sie uns zunächst darüber sprechen, warum das Herunterladen von Dateien beschädigt wird. Dafür gibt es viele Gründe. Netzwerkprobleme sind der Schuldige. Unterbrechung des Download -Prozesses und der Instabilität im Netzwerk kann zu einer Korruption von Dateien führen. Es gibt auch das Problem mit der Download -Quelle selbst. Die Serverdatei selbst ist gebrochen und natürlich auch unterbrochen, wenn Sie sie herunterladen. Darüber hinaus kann das übermäßige "leidenschaftliche" Scannen einer Antiviren -Software auch zu einer Beschädigung von Dateien führen. Diagnoseproblem: Stellen Sie fest, ob die Datei wirklich beschädigt ist

MySQL kann ohne Netzwerkverbindungen für die grundlegende Datenspeicherung und -verwaltung ausgeführt werden. Für die Interaktion mit anderen Systemen, Remotezugriff oder Verwendung erweiterte Funktionen wie Replikation und Clustering ist jedoch eine Netzwerkverbindung erforderlich. Darüber hinaus sind Sicherheitsmaßnahmen (wie Firewalls), Leistungsoptimierung (Wählen Sie die richtige Netzwerkverbindung) und die Datensicherung für die Verbindung zum Internet von entscheidender Bedeutung.

Die MySQL-Datenbankleistung Optimierungshandbuch In ressourcenintensiven Anwendungen spielt die MySQL-Datenbank eine entscheidende Rolle und ist für die Verwaltung massiver Transaktionen verantwortlich. Mit der Erweiterung der Anwendung werden jedoch die Datenbankleistung Engpässe häufig zu einer Einschränkung. In diesem Artikel werden eine Reihe effektiver Strategien zur Leistungsoptimierung von MySQL -Leistung untersucht, um sicherzustellen, dass Ihre Anwendung unter hohen Lasten effizient und reaktionsschnell bleibt. Wir werden tatsächliche Fälle kombinieren, um eingehende Schlüsseltechnologien wie Indexierung, Abfrageoptimierung, Datenbankdesign und Caching zu erklären. 1. Das Design der Datenbankarchitektur und die optimierte Datenbankarchitektur sind der Eckpfeiler der MySQL -Leistungsoptimierung. Hier sind einige Kernprinzipien: Die Auswahl des richtigen Datentyps und die Auswahl des kleinsten Datentyps, der den Anforderungen entspricht, kann nicht nur Speicherplatz speichern, sondern auch die Datenverarbeitungsgeschwindigkeit verbessern.

MySQL hat sich geweigert, anzufangen? Nicht in Panik, lass es uns ausprobieren! Viele Freunde stellten fest, dass der Service nach der Installation von MySQL nicht begonnen werden konnte, und sie waren so ängstlich! Mach dir keine Sorgen, dieser Artikel wird dich dazu bringen, ruhig damit umzugehen und den Mastermind dahinter herauszufinden! Nachdem Sie es gelesen haben, können Sie dieses Problem nicht nur lösen, sondern auch Ihr Verständnis von MySQL -Diensten und Ihren Ideen zur Fehlerbehebungsproblemen verbessern und zu einem leistungsstärkeren Datenbankadministrator werden! Der MySQL -Dienst startete nicht und es gibt viele Gründe, von einfachen Konfigurationsfehlern bis hin zu komplexen Systemproblemen. Beginnen wir mit den häufigsten Aspekten. Grundkenntnisse: Eine kurze Beschreibung des Service -Startup -Prozesses MySQL Service Startup. Einfach ausgedrückt, lädt das Betriebssystem MySQL-bezogene Dateien und startet dann den MySQL-Daemon. Dies beinhaltet die Konfiguration

Die MySQL -Leistungsoptimierung muss von drei Aspekten beginnen: Installationskonfiguration, Indexierung und Abfrageoptimierung, Überwachung und Abstimmung. 1. Nach der Installation müssen Sie die my.cnf -Datei entsprechend der Serverkonfiguration anpassen, z. 2. Erstellen Sie einen geeigneten Index, um übermäßige Indizes zu vermeiden und Abfrageanweisungen zu optimieren, z. B. den Befehl Erklärung zur Analyse des Ausführungsplans; 3. Verwenden Sie das eigene Überwachungstool von MySQL (ShowProcessList, Showstatus), um die Datenbankgesundheit zu überwachen und die Datenbank regelmäßig zu sichern und zu organisieren. Nur durch kontinuierliche Optimierung dieser Schritte kann die Leistung der MySQL -Datenbank verbessert werden.
