


Besprechen Sie den aktuellen Status und die Entwicklungstrends der Technologie zur Vorhersage der Flugbahn des autonomen Fahrens
1 Was ist Trajektorienvorhersage?
Beim autonomen Fahren befindet sich die Trajektorienvorhersage im Allgemeinen am hinteren Ende des Wahrnehmungsmoduls, und das vordere Ende des Steuermoduls ist ein Verbindungsmodul. Geben Sie die vom Wahrnehmungsmodul bereitgestellten Zustandsinformationen und Straßenstrukturinformationen der Zielspur ein, berücksichtigen Sie umfassend hochpräzise Karteninformationen, Interaktionsinformationen zwischen Zielen, semantische Informationen der Umgebung und Absichtsinformationen des Ziels und treffen Sie Absichten für verschiedene wahrgenommene Ziele . Vorhersage (ein-/ausschalten, geradeaus) und Flugbahnvorhersage für einen Zeitraum in der Zukunft (im Bereich von 0–5 Sekunden). Wie unten gezeigt.
ADAS-Systeme müssen über bestimmte kognitive Fähigkeiten in Bezug auf Umgebungsinformationen verfügen. Die grundlegendste Ebene besteht darin, die Umgebung zu erkennen, die nächste Ebene muss die Umgebung verstehen und die nächste Ebene muss die Umgebung vorhersagen. Nach der Vorhersage des Ziels kann der Controller den Weg des Fahrzeugs auf der Grundlage der vorhergesagten Informationen planen und Entscheidungen zum Bremsen oder zur Ausgabe von Warnungen vor möglichen Gefahrensituationen treffen. Dies ist der Zweck des Flugbahnvorhersagemoduls.
2 Zwei Herausforderungen
Die Flugbahnvorhersage kann in kurzfristige Vorhersagen und langfristige Vorhersagen unterteilt werden.
- Kurzfristige Vorhersagen basieren im Allgemeinen auf dem kinematischen Modell (CV/CA/CTRV/CTRA) basierend auf den aktuellen Zielzustandsinformationen, um die Flugbahn für einen Zeitraum in der Zukunft vorherzusagen Wenn die Zeit zu lang ist, bezieht sich das Ziel nur auf die kinematischen Annahmen, die nicht mehr gültig sind. Für kurzfristige Vorhersagen können Sie ein Bewegungsmodell speziell für die Vorhersage erstellen. Sie können das Vorhersagemodul auch in der vorherigen Filterung verwenden, aber keine Messungen zum Filtern von Aktualisierungen aufrufen. Dies hat den Vorteil, dass Unsicherheit verbreitet werden kann.
- Langfristige Prognosen sind das, was die Branche derzeit betreibt. Diese Art der Vorhersage ist nicht geeignet, nur auf dem Bewegungsmodell zu basieren. Im Allgemeinen ist eine Absichtsvorhersage erforderlich und mit einigen Kontextinformationen (Karte, Interaktionsinformationen zwischen Zielen) kombiniert, um gute Ergebnisse zu erzielen. Derzeit gibt es in der Branche viele verschiedene Ausgabeformen, z. B. die Ausgabe der Wahrscheinlichkeitsverteilung der Flugbahn, die Ausgabe mehrerer vorhergesagter Flugbahnen und die Ausgabe der wahrscheinlichsten vorhergesagten Flugbahn.
Es gibt zwei Herausforderungen für die langfristige Flugbahnvorhersage:
- Es ist unvernünftig, eine mögliche Flugbahn oder alle möglichen Flugbahnen auszugeben. Wenn Sie eine vorhergesagte Flugbahn ausgeben, verfehlen Sie möglicherweise die tatsächliche Flugbahn. Wenn Sie alle möglichen Flugbahnen ausgeben, kommt es zu Fehlalarmen. Dies ist für ADAS-Systeme nicht akzeptabel. Es sollte darüber nachgedacht werden, die vorhergesagten Trajektorien auf eine geeignete Teilmenge zu beschränken.
- Je mehr Sie sich mit der Flugbahnvorhersage befassen, desto mehr Annahmen müssen Sie treffen. Eine extreme Annahme besteht darin, anzunehmen, dass alle Objekte auf der Straße den Verkehrsregeln entsprechen. Dies ist sinnvoll, wenn es für Verkehrssimulationsfunktionen verwendet wird, ist jedoch nicht für ADAS-Systeme geeignet, die auf potenziell gefährliche Situationen reagieren müssen.
Die Unsicherheit, die die langfristige Flugbahnvorhersage beeinflusst, beruht hauptsächlich auf drei Aspekten:
- Die Unsicherheit der vom Sensormodul ausgegebenen Zielzustandsschätzung.
- Unsicherheit bei der Vorhersage der Fahrabsicht.
- Die Unsicherheit zwischen Absichtserkennung und Fahrzeugmobilität ändert sich.
3 Hauptüberlegungen
Vier Aspekte, die für das Flugbahnvorhersagesystem berücksichtigt werden sollten:
- Die Flugbahnvorhersage muss sensibel gegenüber potenziellen Gefahren sein, was die Bedeutung der Flugbahnvorhersage erfordert.
- Es ist notwendig, sowohl das Laufmodell als auch die Informationen über die Absicht und die Umgebung zu berücksichtigen.
- Berücksichtigen Sie die oben genannten Unsicherheiten.
- Berücksichtigen Sie die Anzahl der Ausgabetrajektorien.
4 Branchenmethoden
Die folgende Abbildung zeigt die Klassifizierungsmethode im Übersichtsartikel [2] von Bosch.
- Bei Klassifizierung nach den verschiedenen verwendeten Modellen können Trajektorienvorhersagemethoden in Methoden unterteilt werden, die physikalische Modelle verwenden, Methoden, die Lernen verwenden, und Methoden, die Planungsalgorithmen verwenden.
- Bei Klassifizierung nach den verwendeten Informationen können Methoden zur Flugbahnvorhersage in Methoden unterteilt werden, die Zielinformationen verwenden, Methoden, die dynamische Zielinformationen in der Umgebung verwenden, und Methoden, die statische Umgebungsinformationen verwenden.
Welche allgemeinen Algorithmen sind speziell an der Flugbahnvorhersage beteiligt?
- Absichtsvorhersage: Fuzzy-Theorie, statische BNs, DBN (HMM, JumpMM), DS-Evidenztheorie, Klassifizierungsalgorithmus beim maschinellen Lernen.
- Deep-Learning-bezogene End-to-End-Ausgabe. CNN, LSTM, RNN, Achtung.
Welche spezifischen Informationen können also für die Flugbahnvorhersage verwendet werden?
- Zielinformationen: aktuelle/historische Geschwindigkeits- und Positionsinformationen. Wenn es sich um eine Vorhersage der Fußgängerbahn handelt, können auch die Ausrichtung des Kopfes des Fußgängers, Gelenkinformationen, Informationen zu Geschlecht und Alter sowie Informationen zur menschlichen Aufmerksamkeit verwendet werden.
- Dynamische Zielinformationen in der Umgebung: soziale Kraft, Anziehung, Gruppenbeschränkungsinformationen.
- Statische Umgebungsinformationen: Freiraum, Karte, semantische Informationen (Straßenstruktur/Verkehrsregeln/aktuelle Ampeln).
Derzeit gibt es in der Wissenschaft immer mehr Arbeiten zur Flugbahnvorhersage. Der Hauptgrund dafür ist, dass es in der Branche keine wirksame Methode gibt.
Das Folgende sind Branchenpapiere:
BMW: physikalisches Modell + Absichtsvorhersage (lernbasiert). Heuristische Methoden werden verwendet, um Expertenwissen zu integrieren, das Interaktionsmodell zu vereinfachen und spieltheoretische Ideen zum Klassifizierungsmodell der Absichtsvorhersage hinzuzufügen [3].
BENZ: Hauptsächlich verwandte Artikel zur Absichtsvorhersage unter Verwendung von DBN[4].
Uber: LaneRCNN[5].
Google: VectorNet[6].
Huawei: ZUHAUSE[7].
Waymo: TNT[8].
Aptiv: Covernet[9].
NEC: R2P2[10].
SenseTime: TPNet[11].
Meituan: StarNet[12]. Fußgänger.
Aibee: Sophie[13]. Fußgänger.
MIT: Social lstm[14]. Fußgänger.
Universität für Wissenschaft und Technologie von China: STGAT[15]. Fußgänger.
Baidu: Lane-Attention[16].
Apollo: Sie können den folgenden Blog als Referenz sehen.
https://www.cnblogs.com/liuzubing/p/11388485.html
Das Vorhersagemodul von Apollo erhält Eingaben von den Wahrnehmungs-, Positionierungs- und Kartenmodulen.
1. Zunächst wurde die Szene in zwei Szenen aufgeteilt: normale Fahrtstraße und Kreuzung.
2. Unterteilen Sie dann die Bedeutung der wahrgenommenen Ziele in Ziele, die ignoriert werden können (keine Auswirkungen auf Ihr eigenes Auto haben), Ziele, die mit Vorsicht gehandhabt werden müssen (kann Auswirkungen auf Ihr eigenes Auto haben) und gewöhnliche Ziele (dazwischen). die beiden).
3. Geben Sie dann den Evaluator ein, bei dem es sich im Wesentlichen um eine Absichtsvorhersage handelt.
4. Geben Sie schließlich den Prädiktor ein, der zur Vorhersage der Trajektorienerzeugung verwendet wird. Führen Sie unterschiedliche Vorgänge für unterschiedliche Szenarien aus, z. B. stationäre Ziele, Fahren entlang der Straße, FreeMove und Kreuzungen. 5 Datensatz: 1) NGSIM Straßen Der Fahrstatus des Fahrzeugs während eines bestimmten Zeitraums. Die Daten werden mit einer Kamera erfasst und dann einzeln zu Trackpoint-Datensätzen verarbeitet. Der Datensatz ist eine CSV-Datei. Die Daten enthalten nicht viel Rauschen.
sind weitere Informationen auf Gesamtversandebene, wie z. B. Straßenplanung, Spureinstellung, Verkehrsflussanpassung usw. Der kinematische Zustand des Fahrzeugs muss weiter extrahiert werden. Der Verarbeitungscode kann unten auf Github verwendet werden.
https://github.com/nachiket92/conv-social-pooling
(2) INTERAKTION
Dieser Datensatz wurde für das UC Berkeley Mechanical Systems Control Laboratory (MSC Lab) und Mitarbeiter des Karlsruher Instituts für Technologie (KIT) und des MINES ParisTech-Datensatzes (INTERACTION) entwickelt. Es kann eine große Anzahl interaktiver Verhaltensweisen von Verkehrsteilnehmern (z. B. Fahrzeugen und Fußgängern) in verschiedenen Fahrszenarien in verschiedenen Ländern genau reproduzieren.
http://www.interaction-dataset.com/
(3)apolloscape
Dies ist Apollos öffentlicher Datensatz für autonomes Fahren, der auch die bereitgestellten Daten zur Flugbahnvorhersage enthält . Die interne Datei ist eine 1-minütige Datensequenz mit 2 Bildern pro Sekunde. Die Datenstruktur umfasst Bildnummer-ID, Ziel-ID, Zielkategorie, Position xyz, Länge, Breite und Höhe sowie Richtung. Die Zielkategorie umfasst kleine Autos, große Autos und Fußgänger , Fahrräder/Elektrofahrzeuge und andere.
https://apolloscape.auto/trajectory.html
(4) TRAF
Dieser Datensatz konzentriert sich auf Verkehrsbedingungen mit hoher Dichte, was dem Algorithmus helfen kann, sich besser darauf zu konzentrieren die Analyse des menschlichen Fahrerverhaltens in unsicheren Umgebungen. Jeder Datenrahmen enthält jeweils etwa 13 Kraftfahrzeuge, 5 Fußgänger und 2 Fahrräder im Link Trajectory Prediction Project für den Datensatz.
(5) nuScenes
Dieser Datensatz wurde im April 2020 vorgeschlagen. Es wurden 1.000 Fahrszenen in Boston und Singapur gesammelt, zwei Städten mit starkem Verkehr und schwierigen Fahrbedingungen. Der Datensatz enthält verwandte Artikel. Sie können einen Blick darauf werfen, um diesen Datensatz besser zu verstehen.
https://arxiv.org/abs/1903.11027
In diesem Datensatz gibt es vorhersagebezogene Wettbewerbe, die Sie verfolgen können.
https://www.nuscenes.org/prediction?externalData=all&mapData=all&modalities=Any
6 Bewertungsmetriken
Die derzeit hauptsächlich verwendeten Bewertungsmetriken sind geometrische Metriken.
Es gibt viele Indikatoren für geometrische Messungen, die wichtigsten sind ADE, FDE und MR.
ADE ist der normalisierte euklidische Abstand. FDE ist der euklidische Abstand zwischen den endgültigen Vorhersagepunkten. MR ist die Missrate. Es gibt viele verschiedene Namen. Die Hauptsache ist, einen Schwellenwert festzulegen. Wenn der euklidische Abstand zwischen den vorhergesagten Punkten niedriger ist als dieser Vorhersagewert, wird er als Treffer aufgezeichnet . Abschließend wird ein Prozentsatz berechnet.
Die geometrische Metrik ist ein wichtiger Indikator zur Messung der Ähnlichkeit zwischen der vorhergesagten Flugbahn und der tatsächlichen Flugbahn und kann die Genauigkeit gut darstellen. Für die Flugbahnvorhersage ist es jedoch sinnlos, nur die Genauigkeit zu bewerten. Es sollten auch Wahrscheinlichkeitsmaße zur Bewertung der Unsicherheit vorhanden sein, insbesondere für multimodale Ausgabeverteilungen. Es sollten auch Maßnahmen auf Aufgabenebene, Robustheitsmaße und Effizienzbewertungen vorhanden sein.
Wahrscheinlichkeitsmaß: KL-Divergenz, vorhergesagte Wahrscheinlichkeit und kumulative Wahrscheinlichkeit können als Wahrscheinlichkeitsmaße verwendet werden. Zum Beispiel NLL, KDE-basiertes NLL [17]. Metriken auf Aufgabenebene: Bewerten Sie die Auswirkungen der Flugbahnvorhersage auf die Back-End-Regulierung (piADE, piFDE) [18]. Robustheit: Berücksichtigen Sie die Länge oder Dauer des beobachteten Teils der Flugbahn; die Häufigkeit der Abtastung der Trainingsdaten und die Analyse des Sensorrauschens; die Eingabeeingabe, ob die normale Funktion garantiert ist und andere Faktoren. Effizienz: Berücksichtigen Sie die Rechenleistung.
Wie in der Abbildung unten gezeigt, besteht die Hauptüberlegung dieses Artikels darin, dass basierend auf dem wahren Wert (blau) die vom grauen Zielauto vorhergesagten violetten und grünen Flugbahnen dieselben ADE und FDE haben, wenn geometrische Metriken verwendet werden, aber Verschiedene Vorhersagemethoden haben Auswirkungen auf die Planung des Fahrzeugs. Derzeit gibt es jedoch keine solche Metrik zur Bewertung des Aufgabenniveaus. Daher wurden hierfür piADE und piFDE vorgeschlagen.
7 Drei Fragen
Frage 1: Drei verschiedene Methoden zur Flugbahnvorhersage: basierend auf physikalischem Modell, basierend auf Lernen, basierend auf Planung. Wo liegen ihre jeweiligen Anwendungsszenarien und was sind ihre Vorteile? Nachteile?
Verschiedene Modellierungsmethoden können verschiedene Arten von Kontextinformationen kombinieren und nutzen. Alle Modellierungsmethoden können durch die Verwendung der kontextuellen Hinweise des Ziels sowie dynamischer und statischer Umgebungen erweitert werden. Allerdings weisen unterschiedliche Modellierungsmethoden unterschiedliche Grade an Komplexität und Effizienz bei der Kombination verschiedener Kategorien semantischer Informationen auf.
1. Auf physikalischen Modellen basierende Methode
Anwendbare Szenarien: Ziele, statische Umgebungen und dynamische Simulationen können durch explizite Übertragungsgleichungen modelliert werden.
Vorteile:
- Auf physikalischen Modellen basierende Methoden können durch die Auswahl geeigneter Übertragungsgleichungen problemlos umgebungsübergreifend angewendet werden, ohne dass Trainingsdaten erforderlich sind, obwohl einige Daten für die Parameterschätzung nützlich sind. In der Arbeit führt auch ein einfaches CV-Modell zu vernünftigen Ergebnissen.
- Die auf physikalischen Modellen basierende Methode kann leicht erweitert werden, indem sie mit Hinweisen auf Zielagenten kombiniert wird.
Nachteile:
- Dieser Ansatz der expliziten Modellierung erfasst die Komplexität der realen Welt möglicherweise nicht gut.
- Der Übertragungsgleichung fehlen globale Informationen in Raum und Zeit, wodurch die Möglichkeit besteht, eine lokal optimale Lösung zu erhalten.
Solche Mängel beschränken den Einsatz physikalischer Methoden auf kurzfristige Vorhersagen oder hindernisfreie Umgebungen.
2. Lernbasierte Methode
Anwendbare Szenarien: Geeignet für aktuelle Umgebungen mit komplexen unbekannten Informationen (z. B. öffentliche Bereiche mit umfangreicher Semantik), und diese Informationen können für einen relativ großen Vorhersagebereich verwendet werden.
Vorteile:
- Lernbasierte Methoden können potenziell alle Arten von Kontextinformationen verarbeiten, die im gesammelten Datensatz codiert sind. Einige davon sind kartenbasiert, andere können zur weiteren Erweiterung kontextbezogener Informationen verwendet werden.
Nachteile:
- Für das Training müssen an einem bestimmten Ort genügend Daten gesammelt werden.
- Die Erweiterung der Kontextinformationen kann zu kompliziertem Lernen, Dateneffizienz und Generalisierungsproblemen führen.
- Wird tendenziell in nicht sicherheitskritischen Komponenten verwendet. In ADAS ist die Interpretierbarkeit wichtiger, was durch lernbasierte Methoden nicht erreicht werden kann.
3. Planungsbasierte Methode
Anwendbare Szenarien: Sie bietet eine gute Leistung in Szenarien, in denen der Endpunkt bestimmt ist und die Umgebungskarte verfügbar ist.
Vorteile:
- Wenn die beiden oben genannten Bedingungen erfüllt sind, kann eine bessere Genauigkeit als physikalische Methoden und bessere Generalisierungsfähigkeiten als lernbasierte Methoden erzielt werden.
Nachteile:
- Traditionelle Planungsalgorithmen: Dijkstra, Fast Marching Method, optimale, auf Stichproben basierende Bewegungsplaner werden exponentiell wachsen, wenn die Anzahl der Ziele, die Größe der Umgebung und der Vorhersagebereich zunehmen.
- Im Vergleich zu einfachen physikbasierten Modellen sind die Parameter kontexthinweisbasierter Planungsmethoden (wie Belohnungsfunktionen für die inverse Programmierung und Modelle für die Vorwärtsprogrammierung) trivial. Im Allgemeinen einfacher zu erlernen, aber weniger effizient im Hinblick auf die Inferenz für hochdimensionale (Ziel-)Agentenzustände.
Planungsbasierte Methoden sind im Wesentlichen karten- und abstakelbewusst und erweitern sich natürlich um semantische Hinweise. Typischerweise kodieren sie die Komplexität der Situation in die Ziel-/Belohnungsgleichung, aber dadurch werden dynamische Zeileneingaben möglicherweise nicht richtig integriert. Daher mussten die Autoren spezifische Modifikationen entwerfen, um dynamische Eingaben in den Vorhersagealgorithmus zu integrieren (Sprung-Markov-Prozesse, lokale Anpassungen der vorhergesagten Flugbahn, spieltheoretisch). Im Gegensatz zu lernbasierten Methoden können Zieleingaben leicht zusammengeführt werden, da sowohl Vorwärts- als auch Rückwärtsplanungsprozesse auf demselben dynamischen Zielmodell basieren.
Frage 2: Ist das Problem der Flugbahnvorhersage mittlerweile gelöst?
Der Bedarf an Flugbahnvorhersagen hängt weitgehend von der Anwendungsdomäne und den darin enthaltenen spezifischen Anwendungsszenarien ab. Man kann nicht sagen, dass das Problem der Flugbahnvorhersage kurzfristig gelöst wurde. Nehmen Sie die Automobilindustrie als Beispiel, da es spezielle Normen und Vorschriften gibt, die Höchstgeschwindigkeit, Verkehrsregeln, Geschwindigkeits- und Beschleunigungsverteilung für Fußgänger sowie Spezifikationen für komfortable Beschleunigungs-/Verzögerungsraten von Fahrzeugen festlegen Lösungsvorschläge. Man kann sagen, dass die Lösung für die AEB-Funktion von Smart Cars ein Leistungsniveau erreicht hat, das die industrielle Produktion von Konsumgütern ermöglicht, und die erforderlichen Anwendungsfälle gelöst wurden. Was andere Anwendungsfälle betrifft, werden in naher Zukunft mehr Standardisierung und eine klare Formulierung der Anforderungen erforderlich sein. Und Robustheit und Stabilität müssen sich noch weiterentwickeln.
Bevor wir also antworten, ob die Flugbahnvorhersage dieses Problem gelöst hat, sollte zumindest der Standard festgelegt werden.
Derzeit können im Bereich der Robotik Methoden, die auf physikalischen Modellen und Lernmethoden basieren, eine höhere Genauigkeit in kurzer Zeit (1-2 Sekunden) erreichen. Es eignet sich sehr gut für die lokale Bewegungsplanung und Kollisionsvermeidung von Menschenmengen. Das einfachste CV-Modell hat einen guten Einfluss auf die lokale Planung des Roboters. Betrachtet man die Interaktion zwischen Fußgängern und den Einfluss der Anwesenheit von Robotern auf Fußgängerbewegungen, gibt es viele fortschrittliche Algorithmen.
- Es gibt große Herausforderungen für die globale Pfadplanung, bei der 15–20 Sekunden vorhergesagt werden müssen. Die Anforderungen können entsprechend gelockert werden, und es wird sehr wichtig, die dynamische und statische Kontexteingabe zu verstehen (die sich langfristig auf den Betrieb, die Argumentation auf der Umgebungskarte und die Absichtsableitung des Ziels auswirkt). Für die lokale und globale Pfadplanung eignen sich ortsunabhängige Methoden am besten zur Vorhersage von Bewegungen in verschiedenen Umgebungen.
- Der aktuelle Roboter sagt voraus, dass die ADE in 4,8 Sekunden 0,19–0,4 m beträgt. Ein einfaches Geschwindigkeitsmodell kann auch eine ADE von 0,53 m erreichen. 9s sagt eine ADE von 1,4–2 m voraus.
- Most Work dreht sich alles um Fußgänger, die die Straße überqueren: Gehen Sie los, gehen Sie weiter, hören Sie auf zu laufen.
Fahrrad: Ein Radfahrer nähert sich einer Kreuzung mit bis zu fünf verschiedenen Straßenrichtungen dahinter.
- Frage 3: Sind aktuelle Bewertungstechniken zur Messung der Flugbahnvorhersageleistung gut genug?
- Derzeit mangelt es an einem systematischen Ansatz für Vorhersagealgorithmen, insbesondere für Trajektorienvorhersagemethoden, die kontextbezogene Eingaben berücksichtigen und eine beliebige Anzahl von Zielen vorhersagen.
Mittlerweile verwenden die meisten Autoren nur noch geometrische Metriken (AED, FDE) als Indikator, um die Qualität eines Algorithmus zu messen. Bei langfristigen Vorhersagen sind die Vorhersagen jedoch oft multimodal und mit Unsicherheit verbunden, und die Leistungsbewertung solcher Methoden sollte Metriken verwenden, die dies berücksichtigen, wie etwa die negative Log-Likelihood oder den Logarithmus, der sich aus dem KLD-Verlust ergibt.
Es besteht auch Bedarf an probabilistischen Maßen, die die Zufälligkeit menschlicher Bewegungen und die mit Wahrnehmungsunvollkommenheiten verbundene Unsicherheit besser widerspiegeln können.Es gibt auch eine Robustheitsbewertung, die die Stabilität des Systems berücksichtigen muss, wenn auf der Sensorseite Erkennungsfehler, Trackingfehler, Unsicherheiten bei der Selbstpositionierung oder Kartenänderungen auftreten. Gleichzeitig enthalten die derzeit verwendeten Datensätze zwar sehr umfassende Szenarien, diese Datensätze sind jedoch in der Regel halbautomatisch annotiert und können daher nur unvollständige und verrauschte wahre Wertschätzungen liefern. Darüber hinaus reicht die Flugbahnlänge in einigen Anwendungsbereichen, in denen langfristige Vorhersagen erforderlich sind, häufig nicht aus. Schließlich ist die Interaktion zwischen Zielen im Datensatz normalerweise begrenzt. In einer spärlichen Umgebung ist es beispielsweise schwierig, dass sich Ziele gegenseitig beeinflussen. Zusammenfassend: Um die Qualität von Vorhersagen zu bewerten, sollten Forscher komplexere Datensätze (einschließlich nicht konvexer Hindernisse, langer Flugbahnen und komplexer Wechselwirkungen) und vollständige Metriken (Geometrie + Wahrscheinlichkeit) auswählen. Eine bessere Methode besteht darin, unterschiedliche Genauigkeitsanforderungen basierend auf unterschiedlichen Vorhersagezeiten, unterschiedlichen Beobachtungszeiträumen und unterschiedlichen Szenenkomplexitäten festzulegen. Und es sollte eine Robustheitsbewertung und eine Echtzeitbewertung geben. Darüber hinaus sollte es relevante Indikatoren geben, die die Auswirkungen von ADAS-Systemen auf das Backend messen können [18], und Indikatoren, die die Empfindlichkeit gegenüber Gefahrenszenarien messen [1]. stammt aus der Diskussion in [2], hier zitiert. Der aktuelle Trend geht dahin, komplexere Methoden zu verwenden, um die Methode der Verwendung eines einzelnen Modells + KF zu übertreffen soll ein besseres Verständnis statischer Umgebungen ermöglichen. Und die aktuelle Verwendung semantischer Merkmale zur Flugbahnvorhersage muss noch weiterentwickelt werden In Bezug auf sozialbewusste Szenarien: ① Die meisten aktuellen Methoden gehen davon aus, dass das Verhalten aller beobachteten Personen ähnlich ist und ihre Bewegungen durch dieselben Modelle bestimmt werden können und die gleichen Merkmale vorherzusagen, während sich die Erfassung und Schlussfolgerung hochrangiger sozialer Attribute noch in einem frühen Entwicklungsstadium befindet. ② Die meisten praktikablen Methoden basieren auf der Annahme, dass kooperatives Verhalten zwischen Menschen und realen Menschen möglicherweise eher dazu neigen, individuelle Ziele zu optimieren als gemeinsame Strategien. Daher ist die Methode der Kombination traditioneller KI + Spieltheorie sehr vielversprechend. 8 zukünftige Richtungen
Das obige ist der detaillierte Inhalt vonBesprechen Sie den aktuellen Status und die Entwicklungstrends der Technologie zur Vorhersage der Flugbahn des autonomen Fahrens. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



Die allgemeine Matrixmultiplikation (GEMM) ist ein wesentlicher Bestandteil vieler Anwendungen und Algorithmen und außerdem einer der wichtigen Indikatoren zur Bewertung der Leistung der Computerhardware. Eingehende Forschung und Optimierung der Implementierung von GEMM können uns helfen, Hochleistungsrechnen und die Beziehung zwischen Software- und Hardwaresystemen besser zu verstehen. In der Informatik kann eine effektive Optimierung von GEMM die Rechengeschwindigkeit erhöhen und Ressourcen einsparen, was für die Verbesserung der Gesamtleistung eines Computersystems von entscheidender Bedeutung ist. Ein tiefgreifendes Verständnis des Funktionsprinzips und der Optimierungsmethode von GEMM wird uns helfen, das Potenzial moderner Computerhardware besser zu nutzen und effizientere Lösungen für verschiedene komplexe Computeraufgaben bereitzustellen. Durch Optimierung der Leistung von GEMM

Am 29. Juli nahm Yu Chengdong, Huawei-Geschäftsführer, Vorsitzender von Terminal BG und Vorsitzender von Smart Car Solutions BU, an der Übergabezeremonie des 400.000sten Neuwagens von AITO Wenjie teil, hielt eine Rede und kündigte an, dass die Modelle der Wenjie-Serie dies tun werden Dieses Jahr auf den Markt kommen Im August wurde die Huawei Qiankun ADS 3.0-Version auf den Markt gebracht und es ist geplant, die Upgrades sukzessive von August bis September voranzutreiben. Das Xiangjie S9, das am 6. August auf den Markt kommt, wird erstmals mit dem intelligenten Fahrsystem ADS3.0 von Huawei ausgestattet sein. Mit Hilfe von Lidar wird Huawei Qiankun ADS3.0 seine intelligenten Fahrfähigkeiten erheblich verbessern, über integrierte End-to-End-Funktionen verfügen und eine neue End-to-End-Architektur von GOD (allgemeine Hinderniserkennung)/PDP (prädiktiv) einführen Entscheidungsfindung und Kontrolle), Bereitstellung der NCA-Funktion für intelligentes Fahren von Parkplatz zu Parkplatz und Aktualisierung von CAS3.0

Gestern wurde ich während des Interviews gefragt, ob ich irgendwelche Long-Tail-Fragen gestellt hätte, also dachte ich, ich würde eine kurze Zusammenfassung geben. Das Long-Tail-Problem des autonomen Fahrens bezieht sich auf Randfälle bei autonomen Fahrzeugen, also mögliche Szenarien mit geringer Eintrittswahrscheinlichkeit. Das wahrgenommene Long-Tail-Problem ist einer der Hauptgründe, die derzeit den betrieblichen Designbereich intelligenter autonomer Einzelfahrzeugfahrzeuge einschränken. Die zugrunde liegende Architektur und die meisten technischen Probleme des autonomen Fahrens wurden gelöst, und die verbleibenden 5 % der Long-Tail-Probleme wurden nach und nach zum Schlüssel zur Einschränkung der Entwicklung des autonomen Fahrens. Zu diesen Problemen gehören eine Vielzahl fragmentierter Szenarien, Extremsituationen und unvorhersehbares menschliches Verhalten. Der „Long Tail“ von Randszenarien beim autonomen Fahren bezieht sich auf Randfälle in autonomen Fahrzeugen (AVs). Randfälle sind mögliche Szenarien mit geringer Eintrittswahrscheinlichkeit. diese seltenen Ereignisse

Die Trajektorienvorhersage spielt eine wichtige Rolle beim autonomen Fahren. Unter autonomer Fahrtrajektorienvorhersage versteht man die Vorhersage der zukünftigen Fahrtrajektorie des Fahrzeugs durch die Analyse verschiedener Daten während des Fahrvorgangs. Als Kernmodul des autonomen Fahrens ist die Qualität der Trajektorienvorhersage von entscheidender Bedeutung für die nachgelagerte Planungssteuerung. Die Trajektorienvorhersageaufgabe verfügt über einen umfangreichen Technologie-Stack und erfordert Vertrautheit mit der dynamischen/statischen Wahrnehmung des autonomen Fahrens, hochpräzisen Karten, Fahrspurlinien, Fähigkeiten in der neuronalen Netzwerkarchitektur (CNN&GNN&Transformer) usw. Der Einstieg ist sehr schwierig! Viele Fans hoffen, so schnell wie möglich mit der Flugbahnvorhersage beginnen zu können und Fallstricke zu vermeiden. Heute werde ich eine Bestandsaufnahme einiger häufiger Probleme und einführender Lernmethoden für die Flugbahnvorhersage machen! Einführungsbezogenes Wissen 1. Sind die Vorschaupapiere in Ordnung? A: Schauen Sie sich zuerst die Umfrage an, S

Originaltitel: SIMPL: ASimpleandEfficientMulti-agentMotionPredictionBaselineforAutonomousDriving Paper-Link: https://arxiv.org/pdf/2402.02519.pdf Code-Link: https://github.com/HKUST-Aerial-Robotics/SIMPL Autor: Hong Kong University of Science und Technologie DJI-Papieridee: Dieses Papier schlägt eine einfache und effiziente Bewegungsvorhersagebasislinie (SIMPL) für autonome Fahrzeuge vor. Im Vergleich zum herkömmlichen Agent-Cent

Vorab geschrieben und Ausgangspunkt Das End-to-End-Paradigma verwendet ein einheitliches Framework, um Multitasking in autonomen Fahrsystemen zu erreichen. Trotz der Einfachheit und Klarheit dieses Paradigmas bleibt die Leistung von End-to-End-Methoden für das autonome Fahren bei Teilaufgaben immer noch weit hinter Methoden für einzelne Aufgaben zurück. Gleichzeitig erschweren die in früheren End-to-End-Methoden weit verbreiteten Funktionen der dichten Vogelperspektive (BEV) die Skalierung auf mehr Modalitäten oder Aufgaben. Hier wird ein Sparse-Search-zentriertes End-to-End-Paradigma für autonomes Fahren (SparseAD) vorgeschlagen, bei dem die Sparse-Suche das gesamte Fahrszenario, einschließlich Raum, Zeit und Aufgaben, ohne dichte BEV-Darstellung vollständig abbildet. Insbesondere ist eine einheitliche, spärliche Architektur für die Aufgabenerkennung einschließlich Erkennung, Verfolgung und Online-Zuordnung konzipiert. Zudem schwer

Die beste Version des Apple 16-Systems ist iOS16.1.4. Die beste Version des iOS16-Systems kann von Person zu Person unterschiedlich sein. Die Ergänzungen und Verbesserungen im täglichen Nutzungserlebnis wurden auch von vielen Benutzern gelobt. Welche Version des Apple 16-Systems ist die beste? Antwort: iOS16.1.4 Die beste Version des iOS 16-Systems kann von Person zu Person unterschiedlich sein. Öffentlichen Informationen zufolge gilt iOS16, das 2022 auf den Markt kam, als eine sehr stabile und leistungsstarke Version, und die Benutzer sind mit dem Gesamterlebnis recht zufrieden. Darüber hinaus wurden die neuen Funktionen und Verbesserungen des täglichen Nutzungserlebnisses in iOS16 von vielen Benutzern gut angenommen. Insbesondere in Bezug auf die aktualisierte Akkulaufzeit, Signalleistung und Heizungssteuerung war das Feedback der Benutzer relativ positiv. Betrachtet man jedoch das iPhone14

Im vergangenen Monat hatte ich aus bekannten Gründen einen sehr intensiven Austausch mit verschiedenen Lehrern und Mitschülern der Branche. Ein unvermeidliches Thema im Austausch ist natürlich End-to-End und der beliebte Tesla FSDV12. Ich möchte diese Gelegenheit nutzen, einige meiner aktuellen Gedanken und Meinungen als Referenz und Diskussion darzulegen. Wie definiert man ein durchgängiges autonomes Fahrsystem und welche Probleme sollten voraussichtlich durchgängig gelöst werden? Gemäß der traditionellsten Definition bezieht sich ein End-to-End-System auf ein System, das Rohinformationen von Sensoren eingibt und für die Aufgabe relevante Variablen direkt ausgibt. Bei der Bilderkennung kann CNN beispielsweise als End-to-End bezeichnet werden, verglichen mit der herkömmlichen Methode zum Extrahieren von Merkmalen + Klassifizieren. Bei autonomen Fahraufgaben werden Eingabedaten verschiedener Sensoren (Kamera/LiDAR) benötigt
