


Detaillierte Erläuterung von Generatoren, Iteratoren, dynamisch hinzugefügten Attributen und Methoden in Python
1. Generatordefinition
In Python wird der Mechanismus, der während der Schleife berechnet, als Generator bezeichnet Bei großen Datenmengen wird viel Speicher verbraucht.
Zum Beispiel: Wenn Sie nur auf die ersten paar Elemente zugreifen müssen, wird der gesamte nachfolgende Platz verschwendet
Wenn die Listenelemente nach einem bestimmten Algorithmus berechnet werden, können Sie die nachfolgenden Elemente während der Schleife kontinuierlich berechnen, also Sie müssen keine vollständige Liste erstellen und sparen so viel Platz.
3. Methode 1 zum Erstellen eines Generators (Generatorausdruck)
Der Generatorausdruck ist sehr einfach in () zu ändern, um einen Generator (Generator) zu erstellen.
L = [x * x for x in range(10)] #推导式 print(L) g = (x * x for x in range(10)) #加成括号就是生成器 print(g) #<generator object <genexpr> at 0x1022ef630> '''L是一个list,而g则是一个 generator'''
4 Erstellen eines Generators (Generatorfunktion)
1. Generatorfunktion
Wenn eine Funktion das Schlüsselwort yield enthält, ist die Funktion keine gewöhnliche Funktion mehr, die ein Generatorobjekt erstellt
- Generatorfunktion: Verwenden Sie das Schlüsselwort yield, um sofort ein Ergebnis zurückzugeben, zu blockieren und erneut zu beginnen Iterator und läuft weiter zur nächsten Yield-Anweisung, ruft jeden Rückgabewert einzeln ab, bis keine Yield-Anweisung mehr vorhanden ist, und löst schließlich eine StopIteration-Ausnahme aus zurückgegebene Position. In der nächsten Iteration beginnt der Code mit der Ausführung ab der nächsten Anweisung (nicht der nächsten Zeile) von yield
- send() kann wie next() generieren. Der Generator geht einen Schritt nach unten (stoppt das nächste Mal). es trifft auf Yield), aber send() kann einen Wert übergeben, der als Gesamtergebnis des Yield-Ausdrucks verwendet wird
''' 如果一个函数中包含 yield 关键字,那么这个函数就不再是一个普通函数, 调用函数就是创建了一个生成器(generator)对象 生成器函数:其实就是利用关键字 yield 一次性返回一个结果,阻塞,重新开始 原理 1. 函数有了yield之后,调用它,就会生成一个生成器 2. 下次从下一个语句执行,切记不是下一行(tmp = yield i) 3. return在生成器中代表生成器种植,直接报错:StopIeratation 4. next方法作用:唤醒并继续执行 ''' def test(): print("start") i = 0 while i<3: '''yield i #第一次执行,此处挂起;同时将i的值返回到i #第二次执行,从挂起的地方往下执行''' temp = yield i #下次迭代时,代码从`yield`的下一条语句(不是下一行)开始执行 print(f"i:{i}") i += 1 print("end") return "done" if __name__ == '__main__': a = test() print(type(a)) print(a.__next__()) print(a.__next__()) print(a.__next__()) print(a.__next__())# 抛出异常:StopIteration ''' <class 'generator'> start 0 temp:None 1 temp:None 2 temp:None end Traceback (most recent call last): in <module> print(a.__next__())# 抛出异常:StopIteration StopIteration: done '''
Nach dem Login kopieren5. Zusammenfassung
1. Was ist ein Generator? Der Generator speichert nur eine Reihe von Algorithmen zum Generieren von Werten und lässt nicht zu, dass der Algorithmus jetzt ausgeführt wird. Wenn Sie ihn aufrufen, beginnt er mit der Berechnung einen neuen Wert und geben Sie ihn an Sie zurück
2. Generatorfunktionen
Die Generatorfunktion generiert eine Reihe von Ergebnissen. Nachdem ein Wert über das Schlüsselwort yield zurückgegeben wurde, kann er an der Stelle weiterlaufen, an der er beendet wurde, sodass jederzeit eine Reihe von Werten generiert werden kann.
Generatoren und Iterationen sind eng miteinander verbunden und verfügen über eine __next__()-Mitgliedsmethode, die entweder das nächste Element der Iteration zurückgibt oder eine Ausnahme zum Beenden der Iteration auslöst.
Ein Generator ist ein spezielles Programm, mit dem das iterative Verhalten einer Schleife gesteuert werden kann.
2. Iterator 1. Konzept
Iteration ist eine der leistungsstärksten Funktionen von Python. Es ist eine Möglichkeit, auf die Elemente einer Sammlung zuzugreifen
Ein Iterator ist ein Objekt, das sich die durchquerte Position merken kann
Das Iteratorobjekt beginnt mit dem Zugriff vom ersten Element der Menge, bis auf alle Elemente zugegriffen wurde
Iteratoren können nur vorwärts und nicht rückwärts gehen
Iteratoren haben zwei grundlegende Methoden:
iter() und - netx()
2. Der Unterschied zwischen iterierbaren Objekten und Iteratoren
- Ein Objekt Das die Iter-Methode implementiert, heißt „Iterable object Ieratable“
- Ein Objekt, das die nächste Methode implementiert und iterierbar ist, wird „Iterator“ genannt. Iterator bedeutet: implementiert die Iter-Methode und next Das Objekt der Methode ist der Iterator
!
Generatoren sind alle Iterator-Objekte, aber - list
,
dict , - str
Obwohl sie alle Iterable (iterierbare Objekte) sind, sind sie keine Iteratoren
''' send的作用是唤醒并继续执行,发送一个信息到生成器内部 ''' def foo(): print("start") i = 0 while i < 2: temp = yield i print(f"temp:{temp}") i += 1 print("end") g = foo() print(next(g)) #等同g.__next__(),next是内置函数 print("*"*20) print(g.send(100)) print(next(g)) # for a in g:#g所返回的值是yield处的i # print(a) ''' start 0 ******************** temp:100 1 temp:None end Traceback (most recent call last): print(next(g)) StopIteration '''
Nach dem Login kopieren''' 生成器一定是迭代器 可迭代对象不一定是迭代器,使用iter([])封装后可转为迭代器 ''' from collections.abc import Iterator from collections.abc import Iterable a = isinstance([], Iterator) #list、dict、str虽然是Iterable(可迭代对象),却不是Iterator(迭代器) print(a) a = isinstance([], Iterable) #可迭代对象 print(a) """ 执行结果: False True """
Nach dem Login kopieren
- Iterator
- Das Objekt stellt einen
Datenstrom
dar. Diese Daten können als geordnete Sequenz betrachtet werden, aber wir können die Länge der Sequenz nicht im Voraus kennen. Wir können die nächsten Daten nur bei Bedarf kontinuierlich über die Funktion next() berechnen, sodass die Berechnung von - Iterator
verzögert ist . Es wird nur berechnet, wenn die nächsten Daten zurückgegeben werden müssen.
Der Generator muss also ein Iterator sein. 3. Die Essenz der for-Schleife Die Methode __iter__()
__next__()implementiert und den Abschluss der Iteration durch die StopIteration-Ausnahme identifiziert
__next__() 方法会返回下一个迭代器对象
#创建一个依次返回10,20,30,...这样数字的迭代器 class MyNumbers: def __iter__(self): self.num = 10 return self def __next__(self): if self.num < 40: x = self.num self.num += 10 return x else: raise StopIteration myclass = MyNumbers() myiter = iter(myclass) print(next(myiter)) print(next(myiter)) print(next(myiter)) print(next(myiter)) """ 执行结果: 10 20 30 Traceback (most recent call last): raise StopIteration StopIteration """ """ 程序解析: 在这段代码中,MyNumbers 类定义了一个迭代器。该迭代器的作用是生成一系列数字,从 10 开始,每次增加 10,直到 40,然后停止。 在程序中,通过 iter(myclass) 方法获取 MyNumbers 类的迭代器对象 myiter,然后调用 next(myiter) 方法获取下一个数字。 在第一次调用 next(myiter) 方法时,迭代器会执行 __next__() 方法,返回 self.num 的值 10,然后将 self.num 的值增加 10,变为 20。 在第二次、第三次调用 next(myiter) 方法时,迭代器会再次执行 __next__() 方法,返回 20 和 30,然后将 self.num 的值分别增加 10,变为 30 和 40。 在第四次调用 next(myiter) 方法时,迭代器再次执行 __next__() 方法,发现 self.num 的值已经大于等于 40,于是抛出 StopIteration 异常,表示迭代已经结束。 """Nach dem Login kopieren三、动态添加属性和方法
1、动态编程语言定义
指在运行时可以改变其结构的语言:例如新的函数、对象、甚至代码可以被引进,
已有的函数可以被删除或是其他结构上的变化
2、运行过程中给对象添加属性和方法
#coding=utf-8 import types class Person(): def __init__(self, name, age): self.name = name self.age = age p1 = Person("zhangsan", 20) p2 = Person("lisi", 18) #动态给对象添加属性和方法 p1.score = 100 print(p1.score) #加给p1的只能p1用,对象的也是一样 #动态给对象添加方法 def run(self): print(f"{self.name}, running...") p1.run = types.MethodType(run, p1) #而types.MethodType(run,p1)则是告诉解释器,self指的就是p1 p1.run() """ 执行结果: 100 zhangsan, running... """Nach dem Login kopieren3、给类动态添加静态方法以及类方法
#encoding=utf-8 class Person(): __slots__ = {"name", "age"} def __init__(self, name, age): self.name = name self.age = age @staticmethod def staticfunc(): print("--- static method ---") Person.staticfunc = staticfunc Person.staticfunc() Person.score = 1000 #动态给对象静态方法 print(Person.score) @classmethod def clsfunc(cls): print('--- cls method ---') Person.clsfunc = clsfunc #动态增加类方法 Person.clsfunc()Nach dem Login kopieren四、限制动态添加
1、slots
1. __slots__的作用
__slots__ 对动态添加成员变量、成员方法有限制。对动态添加类属性、类方法没有限制
__slots__ 只对本类有限制,不限制子类
2. 对动态添加成员变量、成员方法有限制
''' MyClass 类使用 __slots__ 属性限制了实例对象的属性,只允许动态添加 x 属性。 因此,obj.x = 1 可以成功,但是 obj.y = 2 会抛出 AttributeError 异常 ''' class MyClass: __slots__ = ['x'] obj = MyClass() obj.x = 1 # 可以动态添加 x 属性 obj.y = 2 # 报错,__slots__ 限制了不能动态添加 y 属性 """ 执行结果: AttributeError: 'MyClass' object has no attribute 'y' """Nach dem Login kopieren3. 对动态添加类属性、类方法没有限制
class MyClass: __slots__ = ['x'] classattr = 1 @classmethod def myclassmethod(cls): print("class method") MyClass.newclassattr = 2 # 可以动态添加类属性 print(MyClass.newclassattr) MyClass.mynewclassmethod = lambda cls: print("new class method") # 可以动态添加类方法 MyClass.mynewclassmethod(MyClass) #传递类本身作为参数 obj = MyClass() obj.x = 3 # 可以动态添加实例属性 print(obj.x) # 可以动态添加 x 属性 """ 执行结果: 2 new class method 3 """Nach dem Login kopierenDas obige ist der detaillierte Inhalt vonDetaillierte Erläuterung von Generatoren, Iteratoren, dynamisch hinzugefügten Attributen und Methoden in Python. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



PHP und Python haben ihre eigenen Vor- und Nachteile, und die Wahl hängt von den Projektbedürfnissen und persönlichen Vorlieben ab. 1.PHP eignet sich für eine schnelle Entwicklung und Wartung großer Webanwendungen. 2. Python dominiert das Gebiet der Datenwissenschaft und des maschinellen Lernens.

Python und JavaScript haben ihre eigenen Vor- und Nachteile in Bezug auf Gemeinschaft, Bibliotheken und Ressourcen. 1) Die Python-Community ist freundlich und für Anfänger geeignet, aber die Front-End-Entwicklungsressourcen sind nicht so reich wie JavaScript. 2) Python ist leistungsstark in Bibliotheken für Datenwissenschaft und maschinelles Lernen, während JavaScript in Bibliotheken und Front-End-Entwicklungsbibliotheken und Frameworks besser ist. 3) Beide haben reichhaltige Lernressourcen, aber Python eignet sich zum Beginn der offiziellen Dokumente, während JavaScript mit Mdnwebdocs besser ist. Die Wahl sollte auf Projektbedürfnissen und persönlichen Interessen beruhen.

Aktivieren Sie die Pytorch -GPU -Beschleunigung am CentOS -System erfordert die Installation von CUDA-, CUDNN- und GPU -Versionen von Pytorch. Die folgenden Schritte führen Sie durch den Prozess: Cuda und Cudnn Installation Bestimmen Sie die CUDA-Version Kompatibilität: Verwenden Sie den Befehl nvidia-smi, um die von Ihrer NVIDIA-Grafikkarte unterstützte CUDA-Version anzuzeigen. Beispielsweise kann Ihre MX450 -Grafikkarte CUDA11.1 oder höher unterstützen. Download und installieren Sie Cudatoolkit: Besuchen Sie die offizielle Website von Nvidiacudatoolkit und laden Sie die entsprechende Version gemäß der höchsten CUDA -Version herunter und installieren Sie sie, die von Ihrer Grafikkarte unterstützt wird. Installieren Sie die Cudnn -Bibliothek:

Docker verwendet Linux -Kernel -Funktionen, um eine effiziente und isolierte Anwendungsumgebung zu bieten. Sein Arbeitsprinzip lautet wie folgt: 1. Der Spiegel wird als schreibgeschützte Vorlage verwendet, die alles enthält, was Sie für die Ausführung der Anwendung benötigen. 2. Das Union File System (UnionFS) stapelt mehrere Dateisysteme, speichert nur die Unterschiede, speichert Platz und beschleunigt. 3. Der Daemon verwaltet die Spiegel und Container, und der Kunde verwendet sie für die Interaktion. 4. Namespaces und CGroups implementieren Container -Isolation und Ressourcenbeschränkungen; 5. Mehrere Netzwerkmodi unterstützen die Containerverbindung. Nur wenn Sie diese Kernkonzepte verstehen, können Sie Docker besser nutzen.

Minio-Objektspeicherung: Hochleistungs-Bereitstellung im Rahmen von CentOS System Minio ist ein hochleistungsfähiges, verteiltes Objektspeichersystem, das auf der GO-Sprache entwickelt wurde und mit Amazons3 kompatibel ist. Es unterstützt eine Vielzahl von Kundensprachen, darunter Java, Python, JavaScript und Go. In diesem Artikel wird kurz die Installation und Kompatibilität von Minio zu CentOS -Systemen vorgestellt. CentOS -Versionskompatibilitätsminio wurde in mehreren CentOS -Versionen verifiziert, einschließlich, aber nicht beschränkt auf: CentOS7.9: Bietet einen vollständigen Installationshandbuch für die Clusterkonfiguration, die Umgebungsvorbereitung, die Einstellungen von Konfigurationsdateien, eine Festplattenpartitionierung und Mini

Pytorch Distributed Training on CentOS -System erfordert die folgenden Schritte: Pytorch -Installation: Die Prämisse ist, dass Python und PIP im CentOS -System installiert sind. Nehmen Sie abhängig von Ihrer CUDA -Version den entsprechenden Installationsbefehl von der offiziellen Pytorch -Website ab. Für CPU-Schulungen können Sie den folgenden Befehl verwenden: PipinstallTorChTorChVisionTorChaudio Wenn Sie GPU-Unterstützung benötigen, stellen Sie sicher, dass die entsprechende Version von CUDA und CUDNN installiert ist und die entsprechende Pytorch-Version für die Installation verwenden. Konfiguration der verteilten Umgebung: Verteiltes Training erfordert in der Regel mehrere Maschinen oder mehrere Maschinen-Mehrfach-GPUs. Ort

Bei der Installation von PyTorch am CentOS -System müssen Sie die entsprechende Version sorgfältig auswählen und die folgenden Schlüsselfaktoren berücksichtigen: 1. Kompatibilität der Systemumgebung: Betriebssystem: Es wird empfohlen, CentOS7 oder höher zu verwenden. CUDA und CUDNN: Pytorch -Version und CUDA -Version sind eng miteinander verbunden. Beispielsweise erfordert Pytorch1.9.0 CUDA11.1, während Pytorch2.0.1 CUDA11.3 erfordert. Die Cudnn -Version muss auch mit der CUDA -Version übereinstimmen. Bestimmen Sie vor der Auswahl der Pytorch -Version unbedingt, dass kompatible CUDA- und CUDNN -Versionen installiert wurden. Python -Version: Pytorch Official Branch

Python zeichnet sich in Automatisierung, Skript und Aufgabenverwaltung aus. 1) Automatisierung: Die Sicherungssicherung wird durch Standardbibliotheken wie OS und Shutil realisiert. 2) Skriptschreiben: Verwenden Sie die PSUTIL -Bibliothek, um die Systemressourcen zu überwachen. 3) Aufgabenverwaltung: Verwenden Sie die Zeitplanbibliothek, um Aufgaben zu planen. Die Benutzerfreundlichkeit von Python und die Unterstützung der reichhaltigen Bibliothek machen es zum bevorzugten Werkzeug in diesen Bereichen.
