Inhaltsverzeichnis
Einführung
Pakete importieren
Bestandsdaten extrahieren
Python-Implementierung
OHLC-Diagramm
Candlestick-Diagramm
砖形图
点数图
添加更多信息
保存图片
写在最后
完整代码
Heim Backend-Entwicklung Python-Tutorial Wie erstelle ich komplexe Finanzdiagramme mit Python-Code?

Wie erstelle ich komplexe Finanzdiagramme mit Python-Code?

Apr 24, 2023 pm 06:28 PM
python 可视化 代码

Wie erstelle ich komplexe Finanzdiagramme mit Python-Code?

Einführung

Die Verbreitung von Programmen und Technologien im Finanzbereich ist unvermeidlich, und das Wachstum scheint nie nachzulassen. Einer der interessantesten Teile der angewandten Programmierung ist die Interpretation und Visualisierung historischer oder Echtzeit-Bestandsdaten.

Für die Visualisierung allgemeiner Daten in Python kommen nun Module wie Matplotlib, Seaborn usw. ins Spiel. Wenn es jedoch um die Visualisierung von Finanzdaten geht, ist Plotly die erste Wahl, da es integrierte Funktionen mit interaktiven Grafiken bietet. Hier möchte ich einen unbesungenen Helden vorstellen, der nichts anderes als eine Bruderbibliothek der MPLFinance-Bibliothek Matplotlib ist.

Wir alle wissen, wie vielseitig das Matplotlib-Paket ist und jede Art von Daten problemlos darstellen kann. Sogar Finanzdiagramme wie Candlesticks können mit dem Matplotlib-Paket gezeichnet werden, aber wir müssen bei Null anfangen.

Kürzlich habe ich erfahren, dass es ein separates Modul namens mplfinance gibt, das sich der Erstellung erweiterter Finanzvisualisierungen widmet. In diesem Artikel werfen wir einen tieferen Blick auf diese Python-Bibliothek und erkunden ihre Möglichkeiten zum Generieren verschiedener Diagrammtypen.

Pakete importieren

Der Import der erforderlichen Pakete in unsere Python-Umgebung ist ein wesentlicher Schritt. In diesem Artikel benötigen wir drei Pakete: Pandas zum Verarbeiten von Datenrahmen, Requests zum Aufrufen der API und Extrahieren von Bestandsdaten und mplfinance zum Erstellen von Finanzdiagrammen. Für diejenigen unter Ihnen, die diese Pakete noch nicht installiert haben, kopieren Sie diesen Code in Ihr Terminal:

pip install pandas
pip install requests
pip install mplfinance
Nach dem Login kopieren

Nachdem Sie die Installation der Pakete abgeschlossen haben, ist es Zeit, sie in unsere Python-Umgebung zu importieren.

import pandas as pd
import requests
import mplfinance as mf
Nach dem Login kopieren

Bestandsdaten extrahieren

Jetzt haben wir alle notwendigen Pakete importiert. Lassen Sie uns die historischen Bestandsdaten von Amazon mithilfe des von 12data.com bereitgestellten API-Endpunkts abrufen[1]. Bis dahin ein Hinweis auf 12data.com: 12data ist einer der führenden Marktdatenanbieter mit einer Vielzahl von API-Endpunkten für alle Arten von Marktdaten. Die Interaktion mit der von Twelve Data bereitgestellten API ist sehr einfach und verfügt über eine der besten Dokumentationen überhaupt. Stellen Sie außerdem sicher, dass Sie über ein Konto bei 12data.com verfügen. Nur dann haben Sie Zugriff auf Ihren API-Schlüssel (ein wichtiges Element zum Extrahieren von Daten mithilfe der API).

Python-Implementierung

def get_historical_data(symbol, start_date):
api_key = 'YOUR API KEY'
api_url = f'https://api.twelvedata.com/time_series?symbol={symbol}&interval=1day&outputsize=5000&apikey={api_key}'
raw_df = requests. get(api_url).json()
df = pd.DataFrame(raw_df['values']).iloc[::-1].set_index('datetime').astype(float)
df = df[df.index >= start_date]
df.index = pd.to_datetime(df.index)
return df
amzn = get_historical_data('AMZN', '2021-01-01')
amzn.tail()
Nach dem Login kopieren

Ausgabe:

Wie erstelle ich komplexe Finanzdiagramme mit Python-Code?

Codebeschreibung

Als erstes definieren wir eine Funktion namens „get_historical_data“, die mit dem Aktiensymbol („symbol“) und dem beginnt Startdatum der historischen Daten ('start_date') als Parameter.

Innerhalb der Funktion definieren wir den API-Schlüssel und die URL und speichern sie in ihren jeweiligen Variablen.

Als nächstes verwenden wir die Funktion „get“, um die historischen Daten im JSON-Format zu extrahieren und in der Variablen „raw_df“ zu speichern. Nachdem wir die JSON-Rohdaten bereinigt und formatiert haben, geben wir sie als leeren Pandas DataFrame zurück.

Abschließend rufen wir die erstellte Funktion auf, um die historischen Daten von Amazon ab Anfang 2021 abzurufen und in der Variablen „amzn“ zu speichern.

OHLC-Diagramm

OHLC-Diagramm ist ein Balkendiagramm, das die Eröffnungs-, Höchst-, Tiefst- und Schlusskurse für jeden Zeitraum anzeigt.

OHLC-Diagramme sind nützlich, weil sie vier wichtige Datenpunkte über einen bestimmten Zeitraum hinweg anzeigen, wobei viele Händler den Schlusskurs für den wichtigsten halten. Es hilft auch, zunehmende oder abnehmende Dynamik anzuzeigen. Wenn Eröffnung und Schluss weit voneinander entfernt sind, ist die Leistung stark; wenn Eröffnung und Schluss nahe beieinander liegen, ist die Leistung unentschlossen oder schwach.

Hoch und Tief zeigen die gesamte Preisspanne für den Zeitraum an und helfen so, die Volatilität einzuschätzen1[2]. Um nun mit mplfinance ein OHLC-Diagramm zu erstellen, ist nur eine Codezeile erforderlich:

mf.plot(amzn.iloc[:-50,:])
Nach dem Login kopieren

Im obigen Code rufen wir zunächst die Plot-Funktion auf, in der wir die zuvor extrahierten Amazon OHLC-Daten in die letzten 50 Messwerte aufteilen. Der Zweck besteht lediglich darin, das Diagramm klarer zu gestalten, damit die Elemente sichtbar sind. Die obige einzelne Codezeile erzeugt eine Ausgabe, die wie folgt aussieht:

Wie erstelle ich komplexe Finanzdiagramme mit Python-Code?

OHLC-Diagramm

Candlestick-Diagramm

Händler verwenden Candlestick-Diagramme, um mögliche Preisbewegungen basierend auf vergangenen Mustern zu bestimmen. Candlesticks sind beim Handel nützlich, da sie über den vom Händler festgelegten Zeitraum hinweg vier Preispunkte (Eröffnungs-, Schluss-, Höchst- und Tiefstkurs) anzeigen.

Das Interessanteste an dieser Art von Diagramm ist, dass es Händlern auch hilft, die Stimmung zu erkennen, die der wichtigste Treiber des Marktes selbst ist2[3]. Um mit mplfinance ein Candlestick-Diagramm zu erstellen, müssen wir lediglich einen weiteren Parameter hinzufügen, nämlich den Typparameterplot der Funktion, in dem die Kerze erwähnt wird. Der Code sieht so aus:

mf.plot(amzn.iloc[:-50,:], type = 'candle')
Nach dem Login kopieren

Der obige Code generiert ein Candlestick-Diagramm wie folgt:

Wie erstelle ich komplexe Finanzdiagramme mit Python-Code?

烛台图

砖形图

砖形图( Renko chart)是一种使用价格变动构建的图表,而不是像大多数图表那样同时使用价格和标准化时间间隔。该图表看起来像一系列砖块,当价格移动指定的价格金额时会创建一个新砖块,并且每个块都与前一个砖块成 45 度角(向上或向下)。Renko 图表的主要用途是过滤掉噪音并帮助交易者更清楚地看到趋势,因为所有小于框大小的运动都被过滤掉 3[4] 。

据我所知,mplfinance 是唯一提供 Renko 图表的 Python 库,也是我们接下来要看到的,这就是为什么这个包在金融可视化方面具有强大优势的原因。现在要创建一个 Renko,我们只需要在函数renko的type参数中指定plot。Renko 图表的代码如下所示:

mf.plot(amzn, type = 'renko')
Nach dem Login kopieren

我们还可以向plot函数添加一个额外的参数,该参数是根据renko_params我们的需要和其他类似类型修改砖块大小的参数,但我更喜欢默认的。上面的代码生成了一个看起来像这样的砖形图:

Wie erstelle ich komplexe Finanzdiagramme mit Python-Code?

砖形图

点数图

点数图,简称 P&F 图,类似于 Renko 图,它在不考虑时间流逝的情况下绘制资产的价格走势。与其他一些类型的图表(例如烛台)相反,烛台标志着资产在设定的时间段内的变动程度,而 P&F 图表使用由堆叠的 X 或 O 组成的列,每个列代表一定数量的价格变动。X 代表价格上涨,而 O 代表价格下跌。当价格反转反转量 4[5] 时,会在 O 之后形成新的 X 列或在 X 之后形成新的 O 列。

支持点数图的函数在其他地方找不到,只能在 mplfinance 库中找到,而且它还使我们可以通过仅pnf在函数的type参数中指定来创建图表的过程更容易plot。代码如下所示:

mf.plot(amzn, type = 'pnf')
Nach dem Login kopieren

Wie erstelle ich komplexe Finanzdiagramme mit Python-Code?

点数图

添加更多信息

mplfinance 包不仅限于生成不同类型的图表,还使我们能够通过添加简单移动平均线 (SMA) 和交易量等附加指标使这些图表更具洞察力。对于那些不知道这两者的人来说,成交量是交易者在特定时间范围内买卖的股票数量,而简单移动平均线 (SMA) 只不过是特定时间段的平均价格。它是一种技术指标,广泛用于创建交易策略。

用 matplotlib 绘制这些数据需要一千年,而 mplfinance 允许我们只用一行代码就可以完成这项任务。除了type参数之外,我们只需要引入另外两个参数,一个是mav我们必须指定每个 SMA 的回溯期的参数,另一个是volume我们必须提到的参数,True 如果我们想将成交量图添加到我们的图表中,或者False 我们不想。这两个指标的代码如下所示:

mf.plot(amzn, mav = (10, 20), type = 'candle', volume = True)
Nach dem Login kopieren

可以通过两种方式修改和试验上述代码。第一种方法显然是尝试不同类型的图表。在上述代码中,我们提到我们的图表类型是烛台,但你可以将其更改为 OHLC、Renko 甚至 P&F 图表,并观察每个图表及其两个附加指标的外观。下一个方法是使用mav我们可以添加任意数量的具有不同回顾期的 SMA的参数。上述代码的输出如下所示:

Wie erstelle ich komplexe Finanzdiagramme mit Python-Code?

保存图片

如果你想知道如何保存这些财务可视化中的任何一个,只需添加另一个参数,savefig即你只需提及其文件名的参数,其余部分将被处理。假设你想保存上面的图,那么你必须遵循的代码如下所示:

mf.plot(amzn,
mav = (10, 20),
type = 'candle',
volume = True,
savefig = 'amzn.png')
Nach dem Login kopieren

这就是你为保存精彩的财务可视化所需要做的全部工作。很容易,对吧?

写在最后

在我看来,与Plotly或Altair等库相比,mplfinance是绘制金融数据最强大的库。本文只是简单介绍了使用mplfinance可以实现的功能,但是这个了不起的库附带了许多新特性。它允许我们添加自定义的技术指标数据,并与实际的图表一起绘制,我们可以自定义整个模板,甚至图表中的每一个元素,添加趋势线,等等。

这个库最好的部分是它的易用性,并帮助我们用一行代码生成高级的财务可视化。虽然像Plotly这样的包有创建这些图表的内置函数,但不可能在一行代码中完成。

mplfinance现在唯一的缺点是它糟糕的文档,这使得人们甚至不知道这个包是关于什么的。文档是一个至关重要的方面,当涉及到开源项目时,文档应该被认为是至关重要的。特别像mplfinance这样的关键和有用的项目必须有清晰文档,对其提供的工具和功能有明确的解释。

到这里,你看完了这篇文章。如果你忘记了图表的代码,不要担心,最后我提供了完整的源代码。你也可以收藏本文,等需要用到的时候再查看。

完整代码

import pandas as pd
import requests
import mplfinance as mf
# Extracting stock data
def get_historical_data(symbol, start_date):
api_key = 'YOUR API KEY'
api_url = f'https://api.twelvedata.com/time_series?symbol={symbol}&interval=1day&outputsize=5000&apikey={api_key}'
raw_df = requests.get(api_url).json()
df = pd.DataFrame(raw_df['values']).iloc[::-1].set_index('datetime').astype(float)
df = df[df.index >= start_date]
df.index = pd.to_datetime(df.index)
return df
amzn = get_historical_data('AMZN', '2021-01-01')
amzn.tail()
# 1. OHLC Chart
mf.plot(amzn.iloc[:-50,:])
# 2. Candlestick Chart
mf.plot(amzn.iloc[:-50,:], type = 'candle')
# 3. Renko Chart
mf.plot(amzn, type = 'renko')
# 4. Point and Figure Chart
mf.plot(amzn, type = 'pnf')
# 5. Technical chart
mf.plot(amzn, mav = (10, 20), type = 'candle', volume = True)
# 6. Plot customization
mf.plot(amzn, mav = (5, 10, 20), type = 'candle',
volume = True, figratio = (10,5),
style = 'binance', title = 'AMZN STOCK PRICE',
tight_layout = True)
# 7. Saving the plot
mf.plot(amzn, mav = (5, 10, 20), type = 'candle',
volume = True, figratio = (10,5),
style = 'binance', title = 'AMZN STOCK PRICE',
tight_layout = True, savefig = 'amzn.png')
Nach dem Login kopieren

Das obige ist der detaillierte Inhalt vonWie erstelle ich komplexe Finanzdiagramme mit Python-Code?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

R.E.P.O. Energiekristalle erklärten und was sie tun (gelber Kristall)
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Beste grafische Einstellungen
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. So reparieren Sie Audio, wenn Sie niemanden hören können
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Wie man alles in Myrise freischaltet
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

So verwenden Sie MySQL nach der Installation So verwenden Sie MySQL nach der Installation Apr 08, 2025 am 11:48 AM

Der Artikel führt den Betrieb der MySQL -Datenbank vor. Zunächst müssen Sie einen MySQL -Client wie MySQLworkBench oder Befehlszeilen -Client installieren. 1. Verwenden Sie den Befehl mySQL-uroot-P, um eine Verbindung zum Server herzustellen und sich mit dem Stammkonto-Passwort anzumelden. 2. Verwenden Sie die Erstellung von Createdatabase, um eine Datenbank zu erstellen, und verwenden Sie eine Datenbank aus. 3.. Verwenden Sie CreateTable, um eine Tabelle zu erstellen, Felder und Datentypen zu definieren. 4. Verwenden Sie InsertInto, um Daten einzulegen, Daten abzufragen, Daten nach Aktualisierung zu aktualisieren und Daten nach Löschen zu löschen. Nur indem Sie diese Schritte beherrschen, lernen, mit gemeinsamen Problemen umzugehen und die Datenbankleistung zu optimieren, können Sie MySQL effizient verwenden.

Wie kontrolliert PS -Federn die Weichheit des Übergangs? Wie kontrolliert PS -Federn die Weichheit des Übergangs? Apr 06, 2025 pm 07:33 PM

Der Schlüssel zur Federkontrolle liegt darin, seine allmähliche Natur zu verstehen. PS selbst bietet nicht die Möglichkeit, die Gradientenkurve direkt zu steuern, aber Sie können den Radius und die Gradientenweichheit flexius durch mehrere Federn, Matching -Masken und feine Selektionen anpassen, um einen natürlichen Übergangseffekt zu erzielen.

Muss MySQL bezahlen? Muss MySQL bezahlen? Apr 08, 2025 pm 05:36 PM

MySQL hat eine kostenlose Community -Version und eine kostenpflichtige Enterprise -Version. Die Community -Version kann kostenlos verwendet und geändert werden, die Unterstützung ist jedoch begrenzt und für Anwendungen mit geringen Stabilitätsanforderungen und starken technischen Funktionen geeignet. Die Enterprise Edition bietet umfassende kommerzielle Unterstützung für Anwendungen, die eine stabile, zuverlässige Hochleistungsdatenbank erfordern und bereit sind, Unterstützung zu bezahlen. Zu den Faktoren, die bei der Auswahl einer Version berücksichtigt werden, gehören Kritikalität, Budgetierung und technische Fähigkeiten von Anwendungen. Es gibt keine perfekte Option, nur die am besten geeignete Option, und Sie müssen die spezifische Situation sorgfältig auswählen.

Wie richte ich PS -Federn ein? Wie richte ich PS -Federn ein? Apr 06, 2025 pm 07:36 PM

PS Federn ist ein Bildkantenschwärcheneffekt, der durch den gewichteten Durchschnitt der Pixel im Randbereich erreicht wird. Das Einstellen des Federradius kann den Grad der Unschärfe steuern und je größer der Wert ist, desto unscharfer ist er. Eine flexible Einstellung des Radius kann den Effekt entsprechend den Bildern und Bedürfnissen optimieren. Verwenden Sie beispielsweise einen kleineren Radius, um Details bei der Verarbeitung von Charakterfotos zu erhalten und einen größeren Radius zu verwenden, um ein dunstiges Gefühl bei der Verarbeitung von Kunst zu erzeugen. Es ist jedoch zu beachten, dass zu groß der Radius leicht an Kantendetails verlieren kann, und zu klein ist der Effekt nicht offensichtlich. Der Federneffekt wird von der Bildauflösung beeinflusst und muss anhand des Bildverständnisses und des Griffs von Effekten angepasst werden.

So optimieren Sie die Datenbankleistung nach der MySQL -Installation So optimieren Sie die Datenbankleistung nach der MySQL -Installation Apr 08, 2025 am 11:36 AM

Die MySQL -Leistungsoptimierung muss von drei Aspekten beginnen: Installationskonfiguration, Indexierung und Abfrageoptimierung, Überwachung und Abstimmung. 1. Nach der Installation müssen Sie die my.cnf -Datei entsprechend der Serverkonfiguration anpassen, z. 2. Erstellen Sie einen geeigneten Index, um übermäßige Indizes zu vermeiden und Abfrageanweisungen zu optimieren, z. B. den Befehl Erklärung zur Analyse des Ausführungsplans; 3. Verwenden Sie das eigene Überwachungstool von MySQL (ShowProcessList, Showstatus), um die Datenbankgesundheit zu überwachen und die Datenbank regelmäßig zu sichern und zu organisieren. Nur durch kontinuierliche Optimierung dieser Schritte kann die Leistung der MySQL -Datenbank verbessert werden.

Welchen Einfluss hat PS -Federn auf die Bildqualität? Welchen Einfluss hat PS -Federn auf die Bildqualität? Apr 06, 2025 pm 07:21 PM

PS -Federn kann zu einem Verlust von Bilddetails, einer verringerten Farbsättigung und einem erhöhten Rauschen führen. Um den Aufprall zu verringern, wird empfohlen, einen kleineren Federradius zu verwenden, die Ebene und dann die Feder zu kopieren und die Bildqualität vor und nach der Federung vorsichtig zu vergleichen. Darüber hinaus ist die Federn für alle Fälle nicht geeignet, und manchmal sind Werkzeuge wie Masken besser zum Umgang mit Bildkanten geeignet.

Wie optimieren Sie die MySQL-Leistung für Hochlastanwendungen? Wie optimieren Sie die MySQL-Leistung für Hochlastanwendungen? Apr 08, 2025 pm 06:03 PM

Die MySQL-Datenbankleistung Optimierungshandbuch In ressourcenintensiven Anwendungen spielt die MySQL-Datenbank eine entscheidende Rolle und ist für die Verwaltung massiver Transaktionen verantwortlich. Mit der Erweiterung der Anwendung werden jedoch die Datenbankleistung Engpässe häufig zu einer Einschränkung. In diesem Artikel werden eine Reihe effektiver Strategien zur Leistungsoptimierung von MySQL -Leistung untersucht, um sicherzustellen, dass Ihre Anwendung unter hohen Lasten effizient und reaktionsschnell bleibt. Wir werden tatsächliche Fälle kombinieren, um eingehende Schlüsseltechnologien wie Indexierung, Abfrageoptimierung, Datenbankdesign und Caching zu erklären. 1. Das Design der Datenbankarchitektur und die optimierte Datenbankarchitektur sind der Eckpfeiler der MySQL -Leistungsoptimierung. Hier sind einige Kernprinzipien: Die Auswahl des richtigen Datentyps und die Auswahl des kleinsten Datentyps, der den Anforderungen entspricht, kann nicht nur Speicherplatz speichern, sondern auch die Datenverarbeitungsgeschwindigkeit verbessern.

Navicat -Methode zum Anzeigen von MongoDB -Datenbankkennwort Navicat -Methode zum Anzeigen von MongoDB -Datenbankkennwort Apr 08, 2025 pm 09:39 PM

Es ist unmöglich, das MongoDB -Passwort direkt über Navicat anzuzeigen, da es als Hash -Werte gespeichert ist. So rufen Sie verlorene Passwörter ab: 1. Passwörter zurücksetzen; 2. Überprüfen Sie die Konfigurationsdateien (können Hash -Werte enthalten). 3. Überprüfen Sie Codes (May Hardcode -Passwörter).

See all articles