


Eine offene Umgebungslösung, die Mängel wie die Batch-Norm-Schicht behebt
Die Test-Time Adaptation (TTA)-Methode leitet das Modell an, während der Testphase schnelles unbeaufsichtigtes/selbstüberwachtes Lernen durchzuführen. Sie ist derzeit ein leistungsstarkes und effektives Werkzeug zur Verbesserung der Out-of-Distribution-Generalisierungsfähigkeiten von Deep Modelle. In dynamischen offenen Szenarien ist jedoch die unzureichende Stabilität immer noch ein großer Mangel bestehender TTA-Methoden, der ihren praktischen Einsatz erheblich behindert. Zu diesem Zweck analysierte ein Forschungsteam der South China University of Technology, des Tencent AI Lab und der National University of Singapore aus einer einheitlichen Perspektive die Gründe, warum die bestehende TTA-Methode in dynamischen Szenarien instabil ist, und wies darauf hin, dass die Normalisierungsschicht darauf beruht on Batch führt zu Instabilität. Darüber hinaus können einige Proben mit Rauschen/großen Gradienten im Testdatenstrom das Modell leicht auf eine degenerierte triviale Lösung optimieren. Auf dieser Grundlage wird weiterhin eine schärfeempfindliche und zuverlässige Testzeit-Entropieminimierungsmethode SAR vorgeschlagen, um eine stabile und effiziente Online-Migration und Generalisierung von Testzeitmodellen in dynamischen offenen Szenarien zu erreichen. Diese Arbeit wurde in die mündliche Prüfung ICLR 2023 aufgenommen (Top 5 % der akzeptierten Arbeiten).
- Papiertitel: Towards Stable Test-time Adaptation in Dynamic Wild World# 🎜🎜#
- Papieradresse: https://openreview.net/forum?id=g2YraF75Tj#🎜🎜 #
- Offener Quellcode: https://github.com/mr-eggplant/SAR Was ist Test? Zeitanpassung?
Online-Migration erreicht werden, die effizienter und universeller ist. Darüber hinaus kann die vollständige Testzeit-Anpassungsmethode [2] an jedes vorab trainierte Modell angepasst werden, ohne dass Original-Trainingsdaten erforderlich sind oder der ursprüngliche Trainingsprozess des Modells beeinträchtigt wird
. Die oben genannten Vorteile haben die praktische Vielseitigkeit der TTA-Methode erheblich verbessert, gepaart mit ihrer hervorragenden Leistung ist TTA zu einer äußerst wichtigen Forschungsrichtung in den Bereichen Migration, Generalisierung und anderen verwandten Bereichen geworden.Warum wilde Testzeitanpassung?
Obwohl bestehende TTA-Methoden großes Potenzial für die Out-of-Distribution-Generalisierung gezeigt haben, wird diese hervorragende Leistung häufig unter bestimmten Testbedingungen erzielt, beispielsweise den Proben des Testdatenstroms Innerhalb eines Zeitraums stammen alle vom gleichen Verteilungsverschiebungstyp, die wahre Kategorieverteilung der Testproben ist einheitlich und zufällig, und jedes Mal ist eine Mini-Batch-Stichprobe erforderlich, bevor eine Anpassung durchgeführt werden kann. Tatsächlich ist es jedoch schwierig, diese potenziellen Annahmen in der realen offenen Welt immer zu erfüllen. In der Praxis kann der Testdatenstrom in jeder beliebigen Kombination eintreffen, und idealerweise sollte das Modell keine Annahmen über die ankommende Form des Testdatenstroms treffen. Wie in Abbildung 2 dargestellt, ist es durchaus möglich, dass der Testdatenstrom auf Folgendes trifft: (a) Proben stammen aus unterschiedlichen Verteilungsoffsets (dh (b) ); Probenchargengröße Sehr klein (gerade 1) ; (c) Die wahre Klassenverteilung der Proben über einen Zeitraum ist ungleichmäßig und ändert sich dynamisch . In diesem Artikel wird die TTA im obigen Szenario zusammenfassend als Wild TTA bezeichnet. Leider erscheinen bestehende TTA-Methoden in diesen wilden Szenarien oft fragil und instabil, weisen eine begrenzte Migrationsleistung auf und können sogar die Leistung des ursprünglichen Modells beeinträchtigen. Wenn wir daher die groß angelegte und tiefgreifende Anwendungsbereitstellung der TTA-Methode in tatsächlichen Szenarien wirklich realisieren wollen, ist die Lösung des Wild-TTA-Problems ein unvermeidlicher und wichtiger Teil.
Abbildung 2 Dynamische offene Szene in der Anpassung während des Modelltests#🎜 🎜#
Lösungsideen und technische LösungenDieser Artikel analysiert die Gründe für das Scheitern von TTA in vielen Wild-Szenarien aus einer einheitlichen Perspektive. und dann eine Lösung anbieten.
1. Warum ist Wild TTA instabil?
(1) Batch Normalization (BN) ist einer der Hauptgründe für TTA-Instabilität in dynamischen Szenarien: Vorhanden TTA-Methoden basieren normalerweise auf der Anpassung der BN-Statistik, d. h. der Verwendung von Testdaten zur Berechnung des Mittelwerts und der Standardabweichung in der BN-Schicht. In den drei tatsächlichen dynamischen Szenarien wird jedoch die statistische Schätzgenauigkeit innerhalb der BN-Schicht verzerrt sein, was zu einer instabilen TTA führt:
- #🎜🎜 #Szenario (a) : Da die BN-Statistiken tatsächlich eine bestimmte Testdatenverteilung darstellen, führt die gleichzeitige Verwendung einer Reihe statistischer Parameter zur Schätzung mehrerer Verteilungen zwangsläufig zu einer eingeschränkten Leistung, siehe Abbildung 3; #
- Szenario (b): Die BN-Statistiken hängen von der Chargengröße ab. Es ist schwierig, genaue statistische Schätzungen von BN für kleine Chargengrößen zu erhalten, siehe Abbildung 4; 🎜#Szenario (c): Proben mit unausgewogener Etikettenverteilung führen zu einer Verzerrung der Statistiken innerhalb der BN-Schicht, d. h. die Statistiken sind auf eine bestimmte Kategorie (einen größeren Anteil der Charge) ausgerichtet. Kategorie), siehe Abbildung 5;
- Um die obige Analyse weiter zu überprüfen, betrachtet dieser Artikel drei weit verbreitete Modelle (ausgestattet mit unterschiedlichen BatchLayerGroup-Normen), basierend auf zwei repräsentativen Zur Validierung wurden TTA-Methoden (TTT [1] und Tent [2]) analysiert. Die endgültige Schlussfolgerung lautet: Batch-unabhängige Normebenen (Gruppen- und Ebenennorm) umgehen die Einschränkungen der Batch-Norm bis zu einem gewissen Grad und eignen sich besser für die Ausführung von TTA in dynamischen offenen Szenarien, und ihre Stabilität ist auch höher# 🎜🎜 #. Daher wird in diesem Artikel auch ein Methodendesign basierend auf dem mit GroupLayer Norm ausgestatteten Modell durchgeführt. Abbildung 3: Leistung verschiedener Methoden und Modelle (verschiedene Normalisierungsschichten) bei Mischungsverteilungsverschiebung #
- Abbildung 4: Leistung verschiedener Methoden und Modelle (verschiedene Normalisierungsschichten) bei unterschiedlichen Chargengrößen . Der schattierte Bereich in der Abbildung stellt die Standardabweichung der Modellleistung dar. Die Standardabweichung von ResNet50-BN und ResNet50-GN ist in der Abbildung zu klein und nicht signifikant (wie in der Abbildung unten)
#🎜🎜 #
Abbildung 5 Leistung verschiedener Methoden und Modelle (verschiedene Normalisierungsebenen) unter Verschiebung der Online-Ungleichgewichtskennzeichnung Je größer das Ungleichgewichtsverhältnis auf der horizontalen Achse in der Abbildung, desto schwerwiegender ist das Kennzeichnungsungleichgewicht
(2) Online-Entropieminimierung kann das Modell leicht auf eine degenerierte triviale Lösung optimieren, das heißt, jede Stichprobe derselben Klasse vorhersagen: Gemäß Abbildung 6 (a) und (b), wenn die Verteilung Wenn die Ebene schwerwiegend ist (Ebene 5), tritt während des Online-Anpassungsprozesses plötzlich das Phänomen der Modellverschlechterung und des Zusammenbruchs auf, dh alle Stichproben (mit unterschiedlichen realen Kategorien) werden gleichzeitig derselben Klasse, der Norm, vorhergesagt Der Modellgradient nimmt vor und nach dem Zusammenbruch des Modells schnell zu und fällt dann auf fast 0 ab, wie in Abbildung 6 (c) dargestellt. Dies weist darauf hin, dass einige große/Rauschgradienten möglicherweise die Modellparameter zerstört haben, wodurch das Modell beschädigt wurde zusammenbrechen.
Abbildung 6 Analyse von Fehlerfällen bei der Online-Testzeit-Entropieminimierung
2. Schärfeempfindliche und zuverlässige Methode zur Testzeit-Entropieminimierung.
Zur Schadensbegrenzung Um das oben genannte Problem der Modellverschlechterung anzugehen, schlägt dieses Papier eine schärfeempfindliche und zuverlässige Methode zur Entropieminimierung während der Testzeit vor (Sharpness-aware and Reliable Entropy Minimization Method, SAR). Es lindert dieses Problem in zweierlei Hinsicht: 1) Zuverlässige Entropieminimierung entfernt einige Proben, die große/verrauschte Gradienten aus der modelladaptiven Aktualisierung erzeugen; 2) Modellschärfeoptimierung korrigiert das Modell für einige der Rauschverläufe Die in den verbleibenden Proben erzeugten sind unempfindlich . Die spezifischen Details werden wie folgt erläutert:
Zuverlässige Entropieminimierung: Erstellen Sie einen alternativen Beurteilungsindex für die Gradientenauswahl basierend auf der Entropie und schließen Sie Proben mit hoher Entropie aus (einschließlich Proben aus den Bereichen 1 und 2 in Abbildung 6 (d). ) aus der Modellanpassung Nehmen Sie nicht an der Modellaktualisierung teil, außer:
wobei x die Testprobe darstellt, Θ den Modellparameter darstellt, die Indikatorfunktion darstellt,
die Entropie von darstellt Das Beispielvorhersageergebnis
ist ein Superparameter. Nur wenn
die Probe an der Backpropagation-Berechnung teilnimmt.
Schärfeempfindliche Entropieoptimierung: Durch einen zuverlässigen Probenauswahlmechanismus gefilterte Proben können nicht vermeiden, dass sie immer noch Proben in Bereich 4 von Abbildung 6 (d) enthalten, und diese Proben können Rauschen erzeugen/große Gradienten setzen das Interferenzmodell fort. Zu diesem Zweck erwägt dieser Artikel die Optimierung des Modells auf ein Minimum, sodass es unempfindlich gegenüber Modellaktualisierungen ist, die durch Rauschgradienten verursacht werden, d. h. die ursprüngliche Modellleistung wird nicht beeinträchtigt:
Die oben genannten Ziele Das endgültige Formular zur Aktualisierung des Farbverlaufs lautet wie folgt:
Unter ihnen ist von SAM [4] inspiriert und wird durch Näherungslösung durch Taylor-Erweiterung erster Ordnung erhalten. Einzelheiten finden Sie im Originaltext und Code dieses Artikels.
An diesem Punkt lautet das allgemeine Optimierungsziel dieses Artikels:
Um zu verhindern, dass das obige Schema unter extremen Bedingungen immer noch versagt, ist außerdem eine Modellwiederherstellungsstrategie erforderlich Einführung: Überwachen Sie das Modell über Mobilgeräte. Unabhängig davon, ob ein Degradationskollaps auftritt, wird entschieden, die ursprünglichen Werte der Modellaktualisierungsparameter zum erforderlichen Zeitpunkt wiederherzustellen.
Experimentelle Bewertung
Leistungsvergleich in dynamischen offenen Szenarien
SAR basiert auf den oben genannten drei dynamischen offenen Szenarien, nämlich a) Mischungsverteilungsverschiebung, b) Einzelprobenanpassung und c) Online-Ungleichgewicht Die Kategorie Die Verteilungsverschiebung wird experimentell anhand des ImageNet-C-Datensatzes überprüft und die Ergebnisse sind in den Tabellen 1, 2 und 3 dargestellt. SAR erzielt in allen drei Szenarien bemerkenswerte Ergebnisse, insbesondere in den Szenarien b) und c). SAR verwendet VitBase als Basismodell und seine Genauigkeit übertrifft die aktuelle SOTA-Methode EATA um fast 10 %.
Tabelle 1 Leistungsvergleich zwischen SAR und bestehenden Methoden in gemischten Szenarien von 15 Schadensarten in ImageNet-C, entsprechend dem dynamischen Szenario (a); und Effizienzvergleich mit bestehenden Methoden 有 Tabelle 2 SAR und die vorhandene Methode zum Leistungsvergleich im Szenario in ImageNet-C, entsprechend der dynamischen Szene (B)
Tabelle 3 Leistungsvergleich zwischen SAR und vorhandenen Methoden in Online-Szenario mit nicht ausgeglichener Klassenverteilungsverschiebung auf ImageNet-C, entsprechend dem dynamischen Szenario (c)
und Vergleich der Gradientenbeschneidungsmethode : Gradientenbeschneidung ist eine einfache und direkte Methode um zu vermeiden, dass große Farbverläufe Modellaktualisierungen beeinträchtigen (oder sogar zu einem Zusammenbruch führen). Hier ist ein Vergleich mit zwei Varianten der Verlaufsbeschneidung (z. B. nach Wert oder nach Norm). Wie in der folgenden Abbildung gezeigt, reagiert die Gradientenbeschneidung sehr empfindlich auf die Auswahl des Gradientenbeschneidungsschwellenwerts δ. Ein kleinerer δ entspricht dem Ergebnis, dass das Modell nicht aktualisiert wird, und ein größerer δ ist schwer zu vermeiden, dass das Modell zusammenbricht. Im Gegensatz dazu erfordert SAR keinen komplizierten Hyperparameter-Filterprozess und bietet eine deutlich bessere Leistung als Gradient Clipping.
Abbildung 7 Leistungsvergleich mit der Gradient-Clipping-Methode im Online-Szenario mit unausgeglichener Etikettenverteilungsverschiebung auf ImageNet-C (Schussrauschen, Stufe 5). Die Genauigkeit wird online basierend auf allen vorherigen Testbeispielen berechnet
: Wie in der folgenden Tabelle gezeigt, arbeiten die verschiedenen Module von SAR zusammen, um den Test im dynamischen offenen Modus effektiv zu verbessern Szenarien modellieren adaptive Stabilität.
Tabelle 4 SAR-Ablationsexperiment auf ImageNet-C (Stufe 5) im Online-Szenario mit unausgeglichener Etikettenverteilungsverschiebung
Visualisierung der Verlustoberflächenschärfe: Das Ergebnis der Visualisierung der Verlustfunktion durch Hinzufügen von Störungen zum Modellgewicht ist in der folgenden Abbildung dargestellt. Unter diesen hat SAR einen größeren Bereich (dunkelblauer Bereich) innerhalb der Kontur mit dem geringsten Verlust als Tent, was darauf hinweist, dass die durch SAR erhaltene Lösung flacher, robuster gegenüber Rauschen/größeren Gradienten ist und eine stärkere Entstörungsfähigkeit aufweist. Abbildung 8: Visualisierung der Entropieverlustoberfläche Zu diesem Zweck analysiert dieser Artikel zunächst aus einer einheitlichen Perspektive die Gründe, warum bestehende Methoden in tatsächlichen dynamischen Szenarien versagen, und entwirft vollständige Experimente, um eine eingehende Überprüfung durchzuführen. Basierend auf diesen Analysen schlägt dieser Artikel schließlich eine schärfeempfindliche und zuverlässige Methode zur Minimierung der Testzeit-Entropie vor, die eine stabile und effiziente Online-Testzeitanpassung des Modells erreicht, indem der Einfluss bestimmter Testproben mit großen Gradienten/Rauschen auf Modellaktualisierungen unterdrückt wird. .
Das obige ist der detaillierte Inhalt vonEine offene Umgebungslösung, die Mängel wie die Batch-Norm-Schicht behebt. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



Dieses KI-gestützte Programmiertool hat in dieser Phase der schnellen KI-Entwicklung eine große Anzahl nützlicher KI-gestützter Programmiertools zu Tage gefördert. KI-gestützte Programmiertools können die Entwicklungseffizienz verbessern, die Codequalität verbessern und Fehlerraten reduzieren. Sie sind wichtige Helfer im modernen Softwareentwicklungsprozess. Heute wird Dayao Ihnen 4 KI-gestützte Programmiertools vorstellen (und alle unterstützen die C#-Sprache). https://github.com/YSGStudyHards/DotNetGuide1.GitHubCopilotGitHubCopilot ist ein KI-Codierungsassistent, der Ihnen hilft, Code schneller und mit weniger Aufwand zu schreiben, sodass Sie sich mehr auf Problemlösung und Zusammenarbeit konzentrieren können. Git

Der Artikel von StableDiffusion3 ist endlich da! Dieses Modell wurde vor zwei Wochen veröffentlicht und verwendet die gleiche DiT-Architektur (DiffusionTransformer) wie Sora. Nach seiner Veröffentlichung sorgte es für großes Aufsehen. Im Vergleich zur Vorgängerversion wurde die Qualität der von StableDiffusion3 generierten Bilder erheblich verbessert. Es unterstützt jetzt Eingabeaufforderungen mit mehreren Themen, und der Textschreibeffekt wurde ebenfalls verbessert, und es werden keine verstümmelten Zeichen mehr angezeigt. StabilityAI wies darauf hin, dass es sich bei StableDiffusion3 um eine Reihe von Modellen mit Parametergrößen von 800 M bis 8 B handelt. Durch diesen Parameterbereich kann das Modell direkt auf vielen tragbaren Geräten ausgeführt werden, wodurch der Einsatz von KI deutlich reduziert wird

In diesem Artikel wird das Problem der genauen Erkennung von Objekten aus verschiedenen Blickwinkeln (z. B. Perspektive und Vogelperspektive) beim autonomen Fahren untersucht, insbesondere wie die Transformation von Merkmalen aus der Perspektive (PV) in den Raum aus der Vogelperspektive (BEV) effektiv ist implementiert über das Modul Visual Transformation (VT). Bestehende Methoden lassen sich grob in zwei Strategien unterteilen: 2D-zu-3D- und 3D-zu-2D-Konvertierung. 2D-zu-3D-Methoden verbessern dichte 2D-Merkmale durch die Vorhersage von Tiefenwahrscheinlichkeiten, aber die inhärente Unsicherheit von Tiefenvorhersagen, insbesondere in entfernten Regionen, kann zu Ungenauigkeiten führen. Während 3D-zu-2D-Methoden normalerweise 3D-Abfragen verwenden, um 2D-Features abzutasten und die Aufmerksamkeitsgewichte der Korrespondenz zwischen 3D- und 2D-Features über einen Transformer zu lernen, erhöht sich die Rechen- und Bereitstellungszeit.

Tutorial zur Entwicklung mobiler Anwendungen in der Go-Sprache Da der Markt für mobile Anwendungen weiterhin boomt, beginnen immer mehr Entwickler damit, sich mit der Verwendung der Go-Sprache für die Entwicklung mobiler Anwendungen zu befassen. Als einfache und effiziente Programmiersprache hat die Go-Sprache auch großes Potenzial für die Entwicklung mobiler Anwendungen gezeigt. In diesem Artikel wird detailliert beschrieben, wie die Go-Sprache zum Entwickeln mobiler Anwendungen verwendet wird, und es werden spezifische Codebeispiele angehängt, um den Lesern den schnellen Einstieg und die Entwicklung eigener mobiler Anwendungen zu erleichtern. 1. Vorbereitung Bevor wir beginnen, müssen wir die Entwicklungsumgebung und die Tools vorbereiten. Kopf

Am 3. März 2022, weniger als einen Monat nach der Geburt von Devin, dem weltweit ersten KI-Programmierer, entwickelte das NLP-Team der Princeton University einen Open-Source-KI-Programmierer-SWE-Agenten. Es nutzt das GPT-4-Modell, um Probleme in GitHub-Repositorys automatisch zu lösen. Die Leistung des SWE-Agenten auf dem SWE-Bench-Testsatz ist ähnlich wie die von Devin, er benötigt durchschnittlich 93 Sekunden und löst 12,29 % der Probleme. Durch die Interaktion mit einem dedizierten Terminal kann der SWE-Agent Dateiinhalte öffnen und durchsuchen, die automatische Syntaxprüfung verwenden, bestimmte Zeilen bearbeiten sowie Tests schreiben und ausführen. (Hinweis: Der obige Inhalt stellt eine geringfügige Anpassung des Originalinhalts dar, die Schlüsselinformationen im Originaltext bleiben jedoch erhalten und überschreiten nicht die angegebene Wortbeschränkung.) SWE-A

„VSCode verstehen: Wofür wird dieses Tool verwendet?“ „Als Programmierer, egal ob Sie Anfänger oder erfahrener Entwickler sind, können Sie auf den Einsatz von Codebearbeitungstools nicht verzichten.“ Unter vielen Bearbeitungstools ist Visual Studio Code (kurz VSCode) bei Entwicklern als Open-Source-, leichter und leistungsstarker Code-Editor sehr beliebt. Wofür genau wird VSCode verwendet? Dieser Artikel befasst sich mit den Funktionen und Verwendungsmöglichkeiten von VSCode und stellt spezifische Codebeispiele bereit, um den Lesern zu helfen

PHP gehört zum Backend in der Webentwicklung. PHP ist eine serverseitige Skriptsprache, die hauptsächlich zur Verarbeitung serverseitiger Logik und zur Generierung dynamischer Webinhalte verwendet wird. Im Vergleich zur Front-End-Technologie wird PHP eher für Back-End-Vorgänge wie die Interaktion mit Datenbanken, die Verarbeitung von Benutzeranfragen und die Generierung von Seiteninhalten verwendet. Anschließend wird anhand konkreter Codebeispiele die Anwendung von PHP in der Backend-Entwicklung veranschaulicht. Schauen wir uns zunächst ein einfaches PHP-Codebeispiel zum Herstellen einer Verbindung zu einer Datenbank und zum Abfragen von Daten an:

Oben geschrieben & Nach persönlichem Verständnis des Autors ist die bildbasierte 3D-Rekonstruktion eine anspruchsvolle Aufgabe, bei der aus einer Reihe von Eingabebildern auf die 3D-Form eines Objekts oder einer Szene geschlossen werden muss. Lernbasierte Methoden haben wegen ihrer Fähigkeit, 3D-Formen direkt abzuschätzen, Aufmerksamkeit erregt. Dieser Übersichtsartikel konzentriert sich auf modernste 3D-Rekonstruktionstechniken, einschließlich der Generierung neuartiger, unsichtbarer Ansichten. Es wird ein Überblick über die jüngsten Entwicklungen bei Gaußschen Splash-Methoden gegeben, einschließlich Eingabetypen, Modellstrukturen, Ausgabedarstellungen und Trainingsstrategien. Auch ungelöste Herausforderungen und zukünftige Ausrichtungen werden besprochen. Angesichts der rasanten Fortschritte auf diesem Gebiet und der zahlreichen Möglichkeiten zur Verbesserung der 3D-Rekonstruktionsmethoden scheint eine gründliche Untersuchung des Algorithmus von entscheidender Bedeutung zu sein. Daher bietet diese Studie einen umfassenden Überblick über die jüngsten Fortschritte in der Gaußschen Streuung. (Wischen Sie mit dem Daumen nach oben
