MySQL Thread Pool: Problem Definition
A new thread pool plugin is now a part of the MySQL Enterprise Edition.
In this blog we will cover the problem that the thread pool is solving
and some high-level description of how it solves this problem.
In the traditional MySQL server model there is a one-to-one mapping between
thread and connection. Even the MySQL server has lots of code where thread
or some abbreviation of thread is actually representing a connection.
Obviously this mapping has served MySQL very well over the years, but there
are some cases where this model don't work so well.
One such case is where there are much more connections executing queries
simultaneously compared to the number of CPUs available in the server. The
MySQL Server also have scalability bottlenecks where performance suffers
when too many connections execute in parallel.
So effectively there are two reasons that can make performance suffer in
the original MySQL Server model.
The first is that many connections executing in parallel means that the
amount of data that the CPUs work on increases. This will decrease the
CPU cache hit rates. Lowering the CPU cache hit rate can have a significant
negative impact on server performance. Actually in some cases the amount
of memory allocated by the connections executing in parallel could at times
even supersede the memory available in the server. In this case we enter a
state called swapping which is very detrimental to performance.
The second problem is that the number of parallel queries and transactions
can have a negative impact on the throughput through the "critical sections"
of the MySQL Server (critical section is where mutexes are applied to
ensure only one CPU changes a certain data structure at a time, when such
a critical section becomes a scalability problem we call it a hot spot).
Statements that writes are more affected since they use more critical
sections.
Neither of those problems can be solved in the operating system scheduler.
However there are some operating systems that have attempted solving this
problem for generic applications on a higher level in the operating system.
Both of those problems have the impact that performance suffers more and
more as the number of statements executed in parallel increases.
In addition there are hot spots where the mutex is held for a longer time
when many concurrent statements and/or transactions are executed in
parallel. One such example is the transaction list in InnoDB where each
transaction is listed in a linked list. Thus when the number of concurrent
transactions increases the time to scan the list increases and the time
holding the lock increases and thus the hot spot becomes even hotter
as the concurrency increases.
Current solutions to these issues exist in InnoDB through use of the
configuration parameter --innodb-thread-concurrency. When this parameter
is set to a nonzero value, this indicates how many threads are
able to run through InnoDB code concurrently. This solution have its
use cases where it works well. It does however have the drawback that
the solution itself contains a hot spot that limits the MySQL server
scalability. It does also not contain any solution to limiting the
number of concurrent transactions.
In a previous alpha version of the MySQL Server (MySQL 6.0) a thread
pool was developed. This thread pool solved the problem with limiting
the number of concurrent threads executing. It did nothing to solve
the problem with limiting the number of concurrent transactions.
It was also a scalability bottleneck in itself. Finally it didn't
solve all issues regarding long queries and blocked queries.
This made it possible for the MySQL Server to become completely
blocked.
When developing the thread pool extension now available in the MySQL
Enterprise Edition we decided to start from a clean plate with the
following requirements:
1) Limit the number of concurrently executing statements to ensure
that each statement execution has sufficient CPU and memory resources
to fulfill its task.
2) Split threads and connection into thread groups that are
independently managed. This is to ensure that the thread pool
plugin itself doesn't become a scalability bottleneck. The
aim is that each thread group has one or zero active threads
at any point in time.
3) Limit the number of concurrently executing transactions
through prioritizing queued connections dependent on if
they have started a transaction or not.
4) Avoid deadlocks when a statement execution becomes long or
when the statement is blocked for some reason for an extended
time.
If you are interested in knowing more details of how the new
thread pool solves these requirements there will be a
webinar on Thursday 20 Oct 2011 at 9.00 PDT. Check here
for details on how to access it.
If you want to try out the thread pool go here.
参考:
http://mikaelronstrom.blogspot.ae/2011/10/mysql-thread-pool-problem-definition.html

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



Die volle Tabellenscannung kann in MySQL schneller sein als die Verwendung von Indizes. Zu den spezifischen Fällen gehören: 1) das Datenvolumen ist gering; 2) Wenn die Abfrage eine große Datenmenge zurückgibt; 3) wenn die Indexspalte nicht sehr selektiv ist; 4) Wenn die komplexe Abfrage. Durch Analyse von Abfrageplänen, Optimierung von Indizes, Vermeidung von Überindex und regelmäßiger Wartung von Tabellen können Sie in praktischen Anwendungen die besten Auswahlmöglichkeiten treffen.

Die Volltext-Suchfunktionen von InnoDB sind sehr leistungsfähig, was die Effizienz der Datenbankabfrage und die Fähigkeit, große Mengen von Textdaten zu verarbeiten, erheblich verbessern kann. 1) InnoDB implementiert die Volltext-Suche durch invertierte Indexierung und unterstützt grundlegende und erweiterte Suchabfragen. 2) Verwenden Sie die Übereinstimmung und gegen Schlüsselwörter, um den Booleschen Modus und die Phrasesuche zu unterstützen. 3) Die Optimierungsmethoden umfassen die Verwendung der Word -Segmentierungstechnologie, die regelmäßige Wiederaufbauung von Indizes und die Anpassung der Cache -Größe, um die Leistung und Genauigkeit zu verbessern.

Ja, MySQL kann unter Windows 7 installiert werden, und obwohl Microsoft Windows 7 nicht mehr unterstützt hat, ist MySQL dennoch kompatibel damit. Während des Installationsprozesses sollten jedoch folgende Punkte festgestellt werden: Laden Sie das MySQL -Installationsprogramm für Windows herunter. Wählen Sie die entsprechende Version von MySQL (Community oder Enterprise) aus. Wählen Sie während des Installationsprozesses das entsprechende Installationsverzeichnis und das Zeichen fest. Stellen Sie das Stammbenutzerkennwort ein und behalten Sie es ordnungsgemäß. Stellen Sie zum Testen eine Verbindung zur Datenbank her. Beachten Sie die Kompatibilitäts- und Sicherheitsprobleme unter Windows 7, und es wird empfohlen, auf ein unterstütztes Betriebssystem zu aktualisieren.

Der Unterschied zwischen Clustered Index und nicht klusterer Index ist: 1. Clustered Index speichert Datenzeilen in der Indexstruktur, die für die Abfrage nach Primärschlüssel und Reichweite geeignet ist. 2. Der nicht klusterierte Index speichert Indexschlüsselwerte und -zeiger auf Datenzeilen und ist für nicht-primäre Schlüsselspaltenabfragen geeignet.

In Artikel werden beliebte MySQL -GUI -Tools wie MySQL Workbench und PhpMyAdmin beschrieben, die ihre Funktionen und ihre Eignung für Anfänger und fortgeschrittene Benutzer vergleichen. [159 Charaktere]

In Artikel werden Strategien zum Umgang mit großen Datensätzen in MySQL erörtert, einschließlich Partitionierung, Sharding, Indexierung und Abfrageoptimierung.

MySQL ist ein Open Source Relational Database Management System. 1) Datenbank und Tabellen erstellen: Verwenden Sie die Befehle erstellte und creatEtable. 2) Grundlegende Vorgänge: Einfügen, aktualisieren, löschen und auswählen. 3) Fortgeschrittene Operationen: Join-, Unterabfrage- und Transaktionsverarbeitung. 4) Debugging -Fähigkeiten: Syntax, Datentyp und Berechtigungen überprüfen. 5) Optimierungsvorschläge: Verwenden Sie Indizes, vermeiden Sie ausgewählt* und verwenden Sie Transaktionen.

In der MySQL -Datenbank wird die Beziehung zwischen dem Benutzer und der Datenbank durch Berechtigungen und Tabellen definiert. Der Benutzer verfügt über einen Benutzernamen und ein Passwort, um auf die Datenbank zuzugreifen. Die Berechtigungen werden über den Zuschussbefehl erteilt, während die Tabelle durch den Befehl create table erstellt wird. Um eine Beziehung zwischen einem Benutzer und einer Datenbank herzustellen, müssen Sie eine Datenbank erstellen, einen Benutzer erstellen und dann Berechtigungen erfüllen.
