Kafka ist eine Open-Source-Stream-Verarbeitungsplattform, die von der Apache Software Foundation entwickelt und in Scala und Java geschrieben wurde. Kafka ist ein verteiltes Publish-Subscribe-Messagingsystem mit hohem Durchsatz, das alle Aktions-Streaming-Daten von Verbrauchern auf der Website verarbeiten kann. Solche Aktionen (Websurfen, Suchen und andere Benutzeraktionen) sind ein Schlüsselfaktor für viele soziale Funktionen im modernen Web. Aufgrund der Durchsatzanforderungen werden diese Daten in der Regel durch die Verarbeitung von Protokollen und die Protokollaggregation verarbeitet. Dies ist eine praktikable Lösung für Protokolldaten und Offline-Analysesysteme wie Hadoop, erfordert jedoch Einschränkungen bei der Echtzeitverarbeitung. Der Zweck von Kafka besteht darin, die Online- und Offline-Nachrichtenverarbeitung durch den parallelen Lademechanismus von Hadoop zu vereinheitlichen und Echtzeitnachrichten über den Cluster bereitzustellen.
Nachrichtensystem: Kafka und traditionelle Nachrichtensysteme (auch Nachrichten-Middleware genannt) verfügen beide über Systementkopplung und Redundanz. Es bietet Funktionen wie z B. Ersatzspeicher, Begrenzung von Verkehrsspitzen, Pufferung, asynchrone Kommunikation, Skalierbarkeit und Wiederherstellbarkeit. Gleichzeitig bietet Kafka auch Funktionen zur Garantie der Nachrichtensequenz und zum rückwirkenden Verbrauch, die in den meisten Messaging-Systemen nur schwer zu erreichen sind.
Speichersystem: Kafka speichert Nachrichten auf der Festplatte, wodurch das Risiko eines Datenverlusts im Vergleich zu anderen speicherbasierten Systemen effektiv verringert wird. Dank der Nachrichtenpersistenzfunktion und des Mehrfachkopiemechanismus von Kafka können wir Kafka als langfristiges Datenspeichersystem verwenden. Wir müssen lediglich die entsprechende Datenaufbewahrungsrichtlinie auf „permanent“ setzen oder die Protokollkomprimierungsfunktion des Themas aktivieren. Das ist es.
Streaming-Verarbeitungsplattform: Kafka bietet nicht nur eine zuverlässige Datenquelle für jedes gängige Streaming-Framework, sondern auch eine vollständige Streaming-Klassenbibliothek, z. B. verschiedene Operationen wie Windows , Verbindungen, Transformationen und Aggregationen.
Werfen wir einen Blick auf den detaillierten Code von SpringBoot, der die Kafka-Toolklasse integriert.
pom.xml
<dependency> <groupId>org.apache.commons</groupId> <artifactId>commons-lang3</artifactId> <version>3.12.0</version> </dependency> <dependency> <groupId>org.apache.kafka</groupId> <artifactId>kafka-clients</artifactId> <version>2.6.3</version> </dependency> <dependency> <groupId>fastjson</groupId> <artifactId>fastjson</artifactId> <version>1.2.83</version> </dependency>
Tools
package com.bbl.demo.utils; import org.apache.commons.lang3.exception.ExceptionUtils; import org.apache.kafka.clients.admin.*; import org.apache.kafka.clients.consumer.ConsumerConfig; import org.apache.kafka.clients.consumer.ConsumerRecord; import org.apache.kafka.clients.consumer.ConsumerRecords; import org.apache.kafka.clients.consumer.KafkaConsumer; import org.apache.kafka.clients.producer.KafkaProducer; import org.apache.kafka.clients.producer.ProducerRecord; import org.apache.kafka.common.KafkaFuture; import org.apache.kafka.common.errors.TopicExistsException; import org.apache.kafka.common.errors.UnknownTopicOrPartitionException; import com.alibaba.fastjson.JSONObject; import java.time.Duration; import java.util.*; import java.util.concurrent.ExecutionException; public class KafkaUtils { private static AdminClient admin; /** * 私有静态方法,创建Kafka生产者 * @author o * @return KafkaProducer */ private static KafkaProducer<String, String> createProducer() { Properties props = new Properties(); //声明kafka的地址 props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"node01:9092,node02:9092,node03:9092"); //0、1 和 all:0表示只要把消息发送出去就返回成功;1表示只要Leader收到消息就返回成功;all表示所有副本都写入数据成功才算成功 props.put("acks", "all"); //重试次数 props.put("retries", Integer.MAX_VALUE); //批处理的字节数 props.put("batch.size", 16384); //批处理的延迟时间,当批次数据未满之时等待的时间 props.put("linger.ms", 1); //用来约束KafkaProducer能够使用的内存缓冲的大小的,默认值32MB props.put("buffer.memory", 33554432); // properties.put("value.serializer", // "org.apache.kafka.common.serialization.ByteArraySerializer"); // properties.put("key.serializer", // "org.apache.kafka.common.serialization.ByteArraySerializer"); props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer"); props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer"); return new KafkaProducer<String, String>(props); } /** * 私有静态方法,创建Kafka消费者 * @author o * @return KafkaConsumer */ private static KafkaConsumer<String, String> createConsumer() { Properties props = new Properties(); //声明kafka的地址 props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"node01:9092,node02:9092,node03:9092"); //每个消费者分配独立的消费者组编号 props.put("group.id", "111"); //如果value合法,则自动提交偏移量 props.put("enable.auto.commit", "true"); //设置多久一次更新被消费消息的偏移量 props.put("auto.commit.interval.ms", "1000"); //设置会话响应的时间,超过这个时间kafka可以选择放弃消费或者消费下一条消息 props.put("session.timeout.ms", "30000"); //自动重置offset props.put("auto.offset.reset","earliest"); // properties.put("value.serializer", // "org.apache.kafka.common.serialization.ByteArraySerializer"); // properties.put("key.serializer", // "org.apache.kafka.common.serialization.ByteArraySerializer"); props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer"); props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer"); return new KafkaConsumer<String, String>(props); } /** * 私有静态方法,创建Kafka集群管理员对象 * @author o */ public static void createAdmin(String servers){ Properties props = new Properties(); props.put(AdminClientConfig.BOOTSTRAP_SERVERS_CONFIG,servers); admin = AdminClient.create(props); } /** * 私有静态方法,创建Kafka集群管理员对象 * @author o * @return AdminClient */ private static void createAdmin(){ createAdmin("node01:9092,node02:9092,node03:9092"); } /** * 传入kafka约定的topic,json格式字符串,发送给kafka集群 * @author o * @param topic * @param jsonMessage */ public static void sendMessage(String topic, String jsonMessage) { KafkaProducer<String, String> producer = createProducer(); producer.send(new ProducerRecord<String, String>(topic, jsonMessage)); producer.close(); } /** * 传入kafka约定的topic消费数据,用于测试,数据最终会输出到控制台上 * @author o * @param topic */ public static void consume(String topic) { KafkaConsumer<String, String> consumer = createConsumer(); consumer.subscribe(Arrays.asList(topic)); while (true) { ConsumerRecords<String, String> records = consumer.poll(Duration.ofSeconds(100)); for (ConsumerRecord<String, String> record : records){ System.out.printf("offset = %d, key = %s, value = %s",record.offset(), record.key(), record.value()); System.out.println(); } } } /** * 传入kafka约定的topic数组,消费数据 * @author o * @param topics */ public static void consume(String ... topics) { KafkaConsumer<String, String> consumer = createConsumer(); consumer.subscribe(Arrays.asList(topics)); while (true) { ConsumerRecords<String, String> records = consumer.poll(Duration.ofSeconds(100)); for (ConsumerRecord<String, String> record : records){ System.out.printf("offset = %d, key = %s, value = %s",record.offset(), record.key(), record.value()); System.out.println(); } } } /** * 传入kafka约定的topic,json格式字符串数组,发送给kafka集群 * 用于批量发送消息,性能较高。 * @author o * @param topic * @param jsonMessages * @throws InterruptedException */ public static void sendMessage(String topic, String... jsonMessages) throws InterruptedException { KafkaProducer<String, String> producer = createProducer(); for (String jsonMessage : jsonMessages) { producer.send(new ProducerRecord<String, String>(topic, jsonMessage)); } producer.close(); } /** * 传入kafka约定的topic,Map集合,内部转为json发送给kafka集群 <br> * 用于批量发送消息,性能较高。 * @author o * @param topic * @param mapMessageToJSONForArray */ public static void sendMessage(String topic, List<Map<Object, Object>> mapMessageToJSONForArray) { KafkaProducer<String, String> producer = createProducer(); for (Map<Object, Object> mapMessageToJSON : mapMessageToJSONForArray) { String array = JSONObject.toJSON(mapMessageToJSON).toString(); producer.send(new ProducerRecord<String, String>(topic, array)); } producer.close(); } /** * 传入kafka约定的topic,Map,内部转为json发送给kafka集群 * @author o * @param topic * @param mapMessageToJSON */ public static void sendMessage(String topic, Map<Object, Object> mapMessageToJSON) { KafkaProducer<String, String> producer = createProducer(); String array = JSONObject.toJSON(mapMessageToJSON).toString(); producer.send(new ProducerRecord<String, String>(topic, array)); producer.close(); } /** * 创建主题 * @author o * @param name 主题的名称 * @param numPartitions 主题的分区数 * @param replicationFactor 主题的每个分区的副本因子 */ public static void createTopic(String name,int numPartitions,int replicationFactor){ if(admin == null) { createAdmin(); } Map<String, String> configs = new HashMap<>(); CreateTopicsResult result = admin.createTopics(Arrays.asList(new NewTopic(name, numPartitions, (short) replicationFactor).configs(configs))); //以下内容用于判断创建主题的结果 for (Map.Entry<String, KafkaFuture<Void>> entry : result.values().entrySet()) { try { entry.getValue().get(); System.out.println("topic "+entry.getKey()+" created"); } catch (InterruptedException | ExecutionException e) { if (ExceptionUtils.getRootCause(e) instanceof TopicExistsException) { System.out.println("topic "+entry.getKey()+" existed"); } } } } /** * 删除主题 * @author o * @param names 主题的名称 */ public static void deleteTopic(String name,String ... names){ if(admin == null) { createAdmin(); } Map<String, String> configs = new HashMap<>(); Collection<String> topics = Arrays.asList(names); topics.add(name); DeleteTopicsResult result = admin.deleteTopics(topics); //以下内容用于判断删除主题的结果 for (Map.Entry<String, KafkaFuture<Void>> entry : result.values().entrySet()) { try { entry.getValue().get(); System.out.println("topic "+entry.getKey()+" deleted"); } catch (InterruptedException | ExecutionException e) { if (ExceptionUtils.getRootCause(e) instanceof UnknownTopicOrPartitionException) { System.out.println("topic "+entry.getKey()+" not exist"); } } } } /** * 查看主题详情 * @author o * @param names 主题的名称 */ public static void describeTopic(String name,String ... names){ if(admin == null) { createAdmin(); } Map<String, String> configs = new HashMap<>(); Collection<String> topics = Arrays.asList(names); topics.add(name); DescribeTopicsResult result = admin.describeTopics(topics); //以下内容用于显示主题详情的结果 for (Map.Entry<String, KafkaFuture<TopicDescription>> entry : result.values().entrySet()) { try { entry.getValue().get(); System.out.println("topic "+entry.getKey()+" describe"); System.out.println("\t name: "+entry.getValue().get().name()); System.out.println("\t partitions: "); entry.getValue().get().partitions().stream().forEach(p-> { System.out.println("\t\t index: "+p.partition()); System.out.println("\t\t\t leader: "+p.leader()); System.out.println("\t\t\t replicas: "+p.replicas()); System.out.println("\t\t\t isr: "+p.isr()); }); System.out.println("\t internal: "+entry.getValue().get().isInternal()); } catch (InterruptedException | ExecutionException e) { if (ExceptionUtils.getRootCause(e) instanceof UnknownTopicOrPartitionException) { System.out.println("topic "+entry.getKey()+" not exist"); } } } } /** * 查看主题列表 * @author o * @return Set<String> TopicList */ public static Set<String> listTopic(){ if(admin == null) { createAdmin(); } ListTopicsResult result = admin.listTopics(); try { result.names().get().stream().map(x->x+"\t").forEach(System.out::print); return result.names().get(); } catch (InterruptedException | ExecutionException e) { e.printStackTrace(); return null; } } public static void main(String[] args) { System.out.println(listTopic()); } }
Das obige ist der detaillierte Inhalt vonWie SpringBoot Kafka-Toolklassen integriert. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!