1.
2. Verwenden Sie Mediapipe, um Finger-Schlüsselpunktkoordinaten zu erhalten.
3. Bestimmen Sie anhand der Koordinatenposition des Fingers und der Koordinatenposition des Rechtecks, ob sich der Fingerpunkt auf dem Rechteck befindet. Wenn ja, folgt das Rechteck der Fingerbewegung.
Umgebungsvorbereitung:
Python: 3.8.8
opencv: 4.2.0.32# 🎜🎜#
mediapipe: 0.8.10.1Hinweis: 1. Wenn die OpenCV-Version zu hoch oder zu niedrig ist, können einige Probleme auftreten, z Die Kamera lässt sich nicht öffnen oder stürzt ab. Bei anderen Problemen wirkt sich die Python-Version auf die auswählbare Version von opencv aus. 2. OpenCV kann nach der Installation von pip mediapipe möglicherweise nicht mehr normal verwendet werden. 1. Lesen Sie das Kameravideo und zeichnen Sie ein Rechteckimport cv2 import time import numpy as np # 调用摄像头 0 默认摄像头 cap = cv2.VideoCapture(0) # 初始方块数据 x = 100 y = 100 w = 100 h = 100 # 读取一帧帧照片 while True: # 返回frame图片 rec,frame = cap.read() # 镜像 frame = cv2.flip(frame,1) # 画矩形 cv2.rectangle(frame, (x, y), (x + w, y + h), (255, 0, 255), -1) # 显示画面 cv2.imshow('frame',frame) # 退出条件 if cv2.waitKey(1) & 0xFF == ord('q'): break cap.release() cv2.destroyAllWindows()
pip install mediapipe
2.1 Konfigurieren Sie einige grundlegende Informationen
import cv2 import time import numpy as np import mediapipe as mp mp_drawing = mp.solutions.drawing_utils mp_drawing_styles = mp.solutions.drawing_styles mp_hands = mp.solutions.hands hands = mp_hands.Hands( static_image_mode=True, max_num_hands=2, min_detection_confidence=0.5)
2.2 Fügen Sie bei der Verarbeitung jedes Bildrahmens #🎜 🎜 hinzu # frame.flags.writeable = False
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# 返回结果
results = hands.process(frame)
frame.flags.writeable = True
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
# 如果结果不为空 if results.multi_hand_landmarks: # 遍历双手(根据读取顺序,一只只手遍历、画画) for hand_landmarks in results.multi_hand_landmarks: mp_drawing.draw_landmarks( frame, hand_landmarks, mp_hands.HAND_CONNECTIONS, mp_drawing_styles.get_default_hand_landmarks_style(), mp_drawing_styles.get_default_hand_connections_style())
import cv2
import time
import numpy as np
import mediapipe as mp
mp_drawing = mp.solutions.drawing_utils
mp_drawing_styles = mp.solutions.drawing_styles
mp_hands = mp.solutions.hands
hands = mp_hands.Hands(
static_image_mode=True,
max_num_hands=2,
min_detection_confidence=0.5)
# 调用摄像头 0 默认摄像头
cap = cv2.VideoCapture(0)
# 方块初始数组
x = 100
y = 100
w = 100
h = 100
# 读取一帧帧照片
while True:
# 返回frame图片
rec,frame = cap.read()
# 镜像
frame = cv2.flip(frame,1)
frame.flags.writeable = False
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# 返回结果
results = hands.process(frame)
frame.flags.writeable = True
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
# 如果结果不为空
if results.multi_hand_landmarks:
# 遍历双手(根据读取顺序,一只只手遍历、画画)
# results.multi_hand_landmarks n双手
# hand_landmarks 每只手上21个点信息
for hand_landmarks in results.multi_hand_landmarks:
mp_drawing.draw_landmarks(
frame,
hand_landmarks,
mp_hands.HAND_CONNECTIONS,
mp_drawing_styles.get_default_hand_landmarks_style(),
mp_drawing_styles.get_default_hand_connections_style())
# 画矩形
cv2.rectangle(frame, (x, y), (x + w, y + h), (255, 0, 255), -1)
# 显示画面
cv2.imshow('frame',frame)
# 退出条件
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
Vollständiger Code
import cv2 import time import math import numpy as np import mediapipe as mp # mediapipe配置 mp_drawing = mp.solutions.drawing_utils mp_drawing_styles = mp.solutions.drawing_styles mp_hands = mp.solutions.hands hands = mp_hands.Hands( static_image_mode=True, max_num_hands=2, min_detection_confidence=0.5) # 调用摄像头 0 默认摄像头 cap = cv2.VideoCapture(0) # cv2.namedWindow("frame", 0) # cv2.resizeWindow("frame", 960, 640) # 获取画面宽度、高度 width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) # 方块初始数组 x = 100 y = 100 w = 100 h = 100 L1 = 0 L2 = 0 on_square = False square_color = (0, 255, 0) # 读取一帧帧照片 while True: # 返回frame图片 rec,frame = cap.read() # 镜像 frame = cv2.flip(frame,1) frame.flags.writeable = False frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) # 返回结果 results = hands.process(frame) frame.flags.writeable = True frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR) # 如果结果不为空 if results.multi_hand_landmarks: # 遍历双手(根据读取顺序,一只只手遍历、画画) # results.multi_hand_landmarks n双手 # hand_landmarks 每只手上21个点信息 for hand_landmarks in results.multi_hand_landmarks: mp_drawing.draw_landmarks( frame, hand_landmarks, mp_hands.HAND_CONNECTIONS, mp_drawing_styles.get_default_hand_landmarks_style(), mp_drawing_styles.get_default_hand_connections_style()) # 记录手指每个点的x y 坐标 x_list = [] y_list = [] for landmark in hand_landmarks.landmark: x_list.append(landmark.x) y_list.append(landmark.y) # 获取食指指尖 index_finger_x, index_finger_y = int(x_list[8] * width),int(y_list[8] * height) # 获取中指 middle_finger_x,middle_finger_y = int(x_list[12] * width), int(y_list[12] * height) # 计算两指尖距离 finger_distance = math.hypot((middle_finger_x - index_finger_x), (middle_finger_y - index_finger_y)) # 如果双指合并(两之间距离近) if finger_distance < 60: # X坐标范围 Y坐标范围 if (index_finger_x > x and index_finger_x < (x + w)) and ( index_finger_y > y and index_finger_y < (y + h)): if on_square == False: L1 = index_finger_x - x L2 = index_finger_y - y square_color = (255, 0, 255) on_square = True else: # 双指不合并/分开 on_square = False square_color = (0, 255, 0) # 更新坐标 if on_square: x = index_finger_x - L1 y = index_finger_y - L2 # 图像融合 使方块不遮挡视频图片 overlay = frame.copy() cv2.rectangle(frame, (x, y), (x + w, y + h), square_color, -1) frame = cv2.addWeighted(overlay, 0.5, frame, 1 - 0.5, 0) # 显示画面 cv2.imshow('frame',frame) # 退出条件 if cv2.waitKey(1) & 0xFF == ord('q'): break cap.release() cv2.destroyAllWindows()
Das obige ist der detaillierte Inhalt vonSo erzielen Sie mit Python+OpenCV den Effekt des Ziehens virtueller Quadrate. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!