Eine kurze Analyse der Berechnung von GMAC und GFLOPS
GMAC steht für „Giga Multiply-Add Operations per Second“ und ist ein Indikator zur Messung der Recheneffizienz von Deep-Learning-Modellen. Diese Metrik stellt die Rechengeschwindigkeit des Modells in Form von einer Milliarde Multiplikations- und Additionsoperationen pro Sekunde dar.
Die Multiply-Accumulate (MAC)-Operation ist eine grundlegende Operation in vielen mathematischen Berechnungen, einschließlich Matrixmultiplikation, Faltung und anderen Tensoren, die üblicherweise in der Tiefe verwendet werden Lernbetrieb. Bei jeder MAC-Operation werden zwei Zahlen multipliziert und das Ergebnis einem Akkumulator hinzugefügt.
Die GMAC-Metrik kann mit der folgenden Formel berechnet werden:
<code>GMAC =(乘法累加运算次数)/(10⁹)</code>
Die Anzahl der Multiplikations-Add-Operationen wird normalerweise durch Analyse der Netzwerkarchitektur und der Dimensionen der Modellparameter bestimmt , wie Gewichte und Verzerrungen.
Mit der GMAC-Metrik können Forscher und Praktiker fundierte Entscheidungen über Modellauswahl, Hardwareanforderungen und Optimierungsstrategien für effiziente und effektive Deep-Learning-Berechnungen treffen.
GFLOPS ist ein Maß für die Rechenleistung eines Computersystems oder einer bestimmten Operation und repräsentiert eine Milliarde Floats pro Zweitens. Punktoperationen. Dabei handelt es sich um die Anzahl der Gleitkommaoperationen pro Sekunde, ausgedrückt in Milliarden (Giga).
Gleitkommaarithmetik bezieht sich auf die Durchführung arithmetischer Berechnungen für reelle Zahlen, die im Gleitkommaformat IEEE 754 dargestellt werden. Zu diesen Operationen gehören typischerweise Addition, Subtraktion, Multiplikation, Division und andere mathematische Operationen.
GFLOPS wird häufig im Hochleistungsrechnen (HPC) und Benchmarking verwendet, insbesondere in Bereichen, die schwere Rechenaufgaben erfordern, wie wissenschaftliche Simulationen, Datenanalyse und Deep Learning.
Die Formel zur Berechnung von GFLOPS lautet wie folgt:
<code>GFLOPS =(浮点运算次数)/(以秒为单位的运行时间)/ (10⁹)</code>
GFLOPS ist ein effektives Maß für die Rechenleistung verschiedener Computersysteme, Prozessoren oder bestimmter Vorgänge. Es hilft bei der Bewertung der Geschwindigkeit und Effizienz von Hardware oder Algorithmen, die Gleitkommaberechnungen durchführen. GFLOPS ist ein Maß für die theoretische Spitzenleistung und spiegelt möglicherweise nicht die tatsächlich in realen Szenarien erzielte Leistung wider, da Faktoren wie Speicherzugriff, Parallelisierung und andere Systembeschränkungen nicht berücksichtigt werden.
Die Beziehung zwischen GMAC und GFLOPS
<code>1 GFLOP = 2 GMAC</code>
Wenn wir diese beiden Indikatoren berechnen möchten, ist es schwieriger, den Code manuell zu schreiben, aber Python hat bereits einen fertigen Code Bibliotheken für uns Verwenden Sie:
ptflops-Bibliothek zur Berechnung von GMAC und GFLOPs
<code>pip install ptflops</code>
Es ist auch sehr einfach zu verwenden:
<code>import torchvision.models as models import torch from ptflops import get_model_complexity_info import re #Model thats already available net = models.densenet161() macs, params = get_model_complexity_info(net, (3, 224, 224), as_strings=True, print_per_layer_stat=True, verbose=True) # Extract the numerical value flops = eval(re.findall(r'([\d.]+)', macs)[0])*2 # Extract the unit flops_unit = re.findall(r'([A-Za-z]+)', macs)[0][0] print('Computational complexity: {:</code>
Die Ergebnisse sind wie folgt folgt:
<code>Computational complexity: 7.82 GMac Computational complexity: 15.64 GFlops Number of parameters: 28.68 M</code>
<code>import os import torch from torch import nn class NeuralNetwork(nn.Module): def __init__(self): super().__init__() self.flatten = nn.Flatten() self.linear_relu_stack = nn.Sequential( nn.Linear(28*28, 512), nn.ReLU(), nn.Linear(512, 512), nn.ReLU(), nn.Linear(512, 10),) def forward(self, x): x = self.flatten(x) logits = self.linear_relu_stack(x) return logits custom_net = NeuralNetwork() macs, params = get_model_complexity_info(custom_net, (28, 28), as_strings=True, print_per_layer_stat=True, verbose=True) # Extract the numerical value flops = eval(re.findall(r'([\d.]+)', macs)[0])*2 # Extract the unit flops_unit = re.findall(r'([A-Za-z]+)', macs)[0][0] print('Computational complexity: {:</code>
<code>Computational complexity: 670.73 KMac Computational complexity: 1341.46 KFlops Number of parameters: 669.71 k</code>
<code>import torch import torch.nn as nn def compute_gmac(model): gmac_count = 0 for param in model.parameters(): shape = param.shape if len(shape) == 2:# 全连接层的权重 gmac_count += shape[0] * shape[1] * 2 gmac_count = gmac_count / 1e9# 转换为十亿为单位 return gmac_count</code>
<code>0.66972288</code>
<code>def compute_gmac(model): gmac_count = 0 for param in model.parameters(): shape = param.shape if len(shape) == 2:# 全连接层的权重 gmac_count += shape[0] * shape[1] * 2 elif len(shape) == 4:# 卷积层的权重 gmac_count += shape[0] * shape[1] * shape[2] * shape[3] * 2 gmac_count = gmac_count / 1e9# 转换为十亿为单位 return gmac_count</code>
Das obige ist der detaillierte Inhalt vonEine kurze Analyse der Berechnung von GMAC und GFLOPS. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



BERT ist ein vorab trainiertes Deep-Learning-Sprachmodell, das 2018 von Google vorgeschlagen wurde. Der vollständige Name lautet BidirektionalEncoderRepresentationsfromTransformers, der auf der Transformer-Architektur basiert und die Eigenschaften einer bidirektionalen Codierung aufweist. Im Vergleich zu herkömmlichen Einweg-Codierungsmodellen kann BERT bei der Textverarbeitung gleichzeitig Kontextinformationen berücksichtigen, sodass es bei Verarbeitungsaufgaben in natürlicher Sprache eine gute Leistung erbringt. Seine Bidirektionalität ermöglicht es BERT, die semantischen Beziehungen in Sätzen besser zu verstehen und dadurch die Ausdrucksfähigkeit des Modells zu verbessern. Durch Vorschulungs- und Feinabstimmungsmethoden kann BERT für verschiedene Aufgaben der Verarbeitung natürlicher Sprache verwendet werden, wie z. B. Stimmungsanalyse und Benennung

Aktivierungsfunktionen spielen beim Deep Learning eine entscheidende Rolle. Sie können nichtlineare Eigenschaften in neuronale Netze einführen und es dem Netz ermöglichen, komplexe Eingabe-Ausgabe-Beziehungen besser zu lernen und zu simulieren. Die richtige Auswahl und Verwendung von Aktivierungsfunktionen hat einen wichtigen Einfluss auf die Leistung und Trainingsergebnisse neuronaler Netze. In diesem Artikel werden vier häufig verwendete Aktivierungsfunktionen vorgestellt: Sigmoid, Tanh, ReLU und Softmax. Beginnend mit der Einführung, den Verwendungsszenarien und den Vorteilen. Nachteile und Optimierungslösungen werden besprochen, um Ihnen ein umfassendes Verständnis der Aktivierungsfunktionen zu vermitteln. 1. Sigmoid-Funktion Einführung in die Sigmoid-Funktionsformel: Die Sigmoid-Funktion ist eine häufig verwendete nichtlineare Funktion, die jede reelle Zahl auf Werte zwischen 0 und 1 abbilden kann. Es wird normalerweise verwendet, um das zu vereinheitlichen

Latent Space Embedding (LatentSpaceEmbedding) ist der Prozess der Abbildung hochdimensionaler Daten auf niedrigdimensionalen Raum. Im Bereich des maschinellen Lernens und des tiefen Lernens handelt es sich bei der Einbettung latenter Räume normalerweise um ein neuronales Netzwerkmodell, das hochdimensionale Eingabedaten in einen Satz niedrigdimensionaler Vektordarstellungen abbildet. Dieser Satz von Vektoren wird oft als „latente Vektoren“ oder „latent“ bezeichnet Kodierungen". Der Zweck der Einbettung latenter Räume besteht darin, wichtige Merkmale in den Daten zu erfassen und sie in einer prägnanteren und verständlicheren Form darzustellen. Durch die Einbettung latenter Räume können wir Vorgänge wie das Visualisieren, Klassifizieren und Clustern von Daten im niedrigdimensionalen Raum durchführen, um die Daten besser zu verstehen und zu nutzen. Die Einbettung latenter Räume findet in vielen Bereichen breite Anwendung, z. B. bei der Bilderzeugung, der Merkmalsextraktion, der Dimensionsreduzierung usw. Die Einbettung des latenten Raums ist das Wichtigste

Heute diskutieren wir darüber, wie Deep-Learning-Technologie die Leistung von visionbasiertem SLAM (Simultaneous Localization and Mapping) in komplexen Umgebungen verbessern kann. Durch die Kombination von Methoden zur Tiefenmerkmalsextraktion und Tiefenanpassung stellen wir hier ein vielseitiges hybrides visuelles SLAM-System vor, das die Anpassung in anspruchsvollen Szenarien wie schlechten Lichtverhältnissen, dynamischer Beleuchtung, schwach strukturierten Bereichen und starkem Jitter verbessern soll. Unser System unterstützt mehrere Modi, einschließlich erweiterter Monokular-, Stereo-, Monokular-Trägheits- und Stereo-Trägheitskonfigurationen. Darüber hinaus wird analysiert, wie visuelles SLAM mit Deep-Learning-Methoden kombiniert werden kann, um andere Forschungen zu inspirieren. Durch umfangreiche Experimente mit öffentlichen Datensätzen und selbst abgetasteten Daten demonstrieren wir die Überlegenheit von SL-SLAM in Bezug auf Positionierungsgenauigkeit und Tracking-Robustheit.

In der heutigen Welle rasanter technologischer Veränderungen sind künstliche Intelligenz (KI), maschinelles Lernen (ML) und Deep Learning (DL) wie helle Sterne und führen die neue Welle der Informationstechnologie an. Diese drei Wörter tauchen häufig in verschiedenen hochaktuellen Diskussionen und praktischen Anwendungen auf, aber für viele Entdecker, die neu auf diesem Gebiet sind, sind ihre spezifische Bedeutung und ihre internen Zusammenhänge möglicherweise noch immer rätselhaft. Schauen wir uns also zunächst dieses Bild an. Es ist ersichtlich, dass zwischen Deep Learning, maschinellem Lernen und künstlicher Intelligenz ein enger Zusammenhang und eine fortschreitende Beziehung besteht. Deep Learning ist ein spezifischer Bereich des maschinellen Lernens und des maschinellen Lernens

1. Einleitung Die Vektorabfrage ist zu einem Kernbestandteil moderner Such- und Empfehlungssysteme geworden. Es ermöglicht einen effizienten Abfrageabgleich und Empfehlungen, indem es komplexe Objekte (wie Text, Bilder oder Töne) in numerische Vektoren umwandelt und Ähnlichkeitssuchen in mehrdimensionalen Räumen durchführt. Schauen Sie sich von den Grundlagen bis zur Praxis die Entwicklungsgeschichte von Elasticsearch Vector Retrieval_elasticsearch an. Als beliebte Open-Source-Suchmaschine hat die Entwicklung von Elasticsearch im Bereich Vektor Retrieval schon immer große Aufmerksamkeit erregt. In diesem Artikel wird die Entwicklungsgeschichte des Elasticsearch-Vektorabrufs untersucht, wobei der Schwerpunkt auf den Merkmalen und dem Fortschritt jeder Phase liegt. Wenn Sie sich an der Geschichte orientieren, ist es für jeden praktisch, eine umfassende Palette zum Abrufen von Elasticsearch-Vektoren einzurichten.

Fast 20 Jahre sind vergangen, seit das Konzept des Deep Learning im Jahr 2006 vorgeschlagen wurde. Deep Learning hat als Revolution auf dem Gebiet der künstlichen Intelligenz viele einflussreiche Algorithmen hervorgebracht. Was sind Ihrer Meinung nach die zehn besten Algorithmen für Deep Learning? Im Folgenden sind meiner Meinung nach die besten Algorithmen für Deep Learning aufgeführt. Sie alle nehmen hinsichtlich Innovation, Anwendungswert und Einfluss eine wichtige Position ein. 1. Hintergrund des Deep Neural Network (DNN): Deep Neural Network (DNN), auch Multi-Layer-Perceptron genannt, ist der am weitesten verbreitete Deep-Learning-Algorithmus. Als er erstmals erfunden wurde, wurde er aufgrund des Engpasses bei der Rechenleistung in Frage gestellt Jahre, Rechenleistung, Der Durchbruch kam mit der Datenexplosion. DNN ist ein neuronales Netzwerkmodell, das mehrere verborgene Schichten enthält. In diesem Modell übergibt jede Schicht Eingaben an die nächste Schicht und

Herausgeber | Rettichhaut Seit der Veröffentlichung des leistungsstarken AlphaFold2 im Jahr 2021 verwenden Wissenschaftler Modelle zur Proteinstrukturvorhersage, um verschiedene Proteinstrukturen innerhalb von Zellen zu kartieren, Medikamente zu entdecken und eine „kosmische Karte“ jeder bekannten Proteininteraktion zu zeichnen. Gerade hat Google DeepMind das AlphaFold3-Modell veröffentlicht, das gemeinsame Strukturvorhersagen für Komplexe wie Proteine, Nukleinsäuren, kleine Moleküle, Ionen und modifizierte Reste durchführen kann. Die Genauigkeit von AlphaFold3 wurde im Vergleich zu vielen dedizierten Tools in der Vergangenheit (Protein-Ligand-Interaktion, Protein-Nukleinsäure-Interaktion, Antikörper-Antigen-Vorhersage) deutlich verbessert. Dies zeigt, dass dies innerhalb eines einzigen einheitlichen Deep-Learning-Frameworks möglich ist
