


Wie modelliere ich Entscheidungsbäume und neuronale Netzwerke in PHP?
Mit der rasanten Entwicklung des maschinellen Lernens sind Entscheidungsbäume und neuronale Netzwerke zu einem der am weitesten verbreiteten Modelle geworden. Sie finden Anwendung in verschiedenen Bereichen wie Finanzen, medizinische Versorgung, E-Commerce usw. Wie modelliere ich Entscheidungsbäume und neuronale Netzwerke in PHP? Wir stellen es Ihnen in diesem Artikel ausführlich vor.
1. Entscheidungsbaummodellierung
Der Entscheidungsbaum ist ein Klassifizierungsmodell mit einer Baumstruktur. Sein Kern besteht darin, Merkmale im Datensatz auszuwählen, die die Daten am besten klassifizieren können. Die Knoten eines Entscheidungsbaums können Blattknoten sein, die Ja/Nein-Antworten darstellen, oder Knoten, die Entscheidungen darstellen. Der Konstruktionsprozess des Entscheidungsbaums besteht darin, von der Wurzel aus zu beginnen und nach und nach die besten Merkmale für die Segmentierung auszuwählen, bis die voreingestellten Stoppbedingungen erreicht sind.
Um die Entscheidungsbaummodellierung in PHP zu implementieren, können Sie die PHP-ML-Bibliothek verwenden. Die PHP-ML-Bibliothek stellt einen Entscheidungsbaumklassifikator bereit: DecisionTreeClassifier. Das Folgende ist ein einfacher Beispielcode:
<?php use PhpmlClassificationDecisionTree; use PhpmlModelManager; require_once __DIR__ . '/vendor/autoload.php'; $trainingSamples = [[1, 2], [1, 4], [3, 1], [3, 3], [2, 2], [4, 1], [4, 3]]; $trainingLabels = ['a', 'a', 'a', 'b', 'a', 'b', 'b']; $classifier = new DecisionTree(); $classifier->train($trainingSamples, $trainingLabels); $modelManager = new ModelManager(); $modelManager->saveToFile($classifier, 'classifier.phpml');
Im obigen Code verwenden wir den DecisionTree-Klassifikator von PHP-ML, um ein einfaches Klassifizierungsmodell zu trainieren, und verwenden den Modellmanager, um das trainierte Modell zur späteren Verwendung in einer Datei zu speichern.
2. Neuronennetzwerkmodellierung
Das Neuronennetzwerk ist ein Modell, das das Nervensystem des menschlichen Gehirns nachahmt. Es weist nichtlineare Eigenschaften auf und kann sich durch Lernen an verschiedene Eingaben anpassen. Neuronale Netzwerke bestehen aus Einheiten (Neuronen) und sie verbindenden gewichteten Kanten und können mit dem Backpropagation-Algorithmus trainiert werden.
Um die Modellierung neuronaler Netzwerke in PHP zu implementieren, können Sie die PHP-Erweiterung Neural Network verwenden. Das Folgende ist ein einfacher Beispielcode:
<?php use FFI; $ffi = FFI::cdef(" typedef struct { double* input; double* hidden; double output; } neuron; void init_neurons(neuron* ns); void train(neuron* ns, double* inputs, double output); double test(neuron* ns, double* inputs); ", "nn.c"); $ns = FFI::new("neuron[4]"); $ffi->init_neurons($ns); for ($i = 0; $i < 10000; ++$i) { $ffi->train($ns, [0, 0], 0); $ffi->train($ns, [0, 1], 1); $ffi->train($ns, [1, 0], 1); $ffi->train($ns, [1, 1], 0); } $result = $ffi->test($ns, [0, 0]); // 0 $result = $ffi->test($ns, [0, 1]); // 1 $result = $ffi->test($ns, [1, 0]); // 1 $result = $ffi->test($ns, [1, 1]); // 0
Im obigen Code verwenden wir die PHP-Erweiterung Neural Network, um ein einfaches Neuronennetzwerk zu trainieren und es zum Ausführen logischer XOR-Operationen zu verwenden.
Fazit
Entscheidungsbäume und neuronale Netzwerke sind sehr wichtige Modellierungsmethoden beim maschinellen Lernen. Diese beiden Methoden können in PHP mithilfe der PHP-ML-Bibliothek bzw. der Neural Network PHP-Erweiterung implementiert werden. Um ein tieferes Verständnis dieser beiden Methoden zu erlangen, wird den Lesern empfohlen, sich weiterhin mit den relevanten Inhalten vertraut zu machen, damit diese besser in tatsächlichen Projekten angewendet werden können.
Das obige ist der detaillierte Inhalt vonWie modelliere ich Entscheidungsbäume und neuronale Netzwerke in PHP?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



PHP 8.4 bringt mehrere neue Funktionen, Sicherheitsverbesserungen und Leistungsverbesserungen mit einer beträchtlichen Menge an veralteten und entfernten Funktionen. In dieser Anleitung wird erklärt, wie Sie PHP 8.4 installieren oder auf PHP 8.4 auf Ubuntu, Debian oder deren Derivaten aktualisieren. Obwohl es möglich ist, PHP aus dem Quellcode zu kompilieren, ist die Installation aus einem APT-Repository wie unten erläutert oft schneller und sicherer, da diese Repositorys in Zukunft die neuesten Fehlerbehebungen und Sicherheitsupdates bereitstellen.

Visual Studio Code, auch bekannt als VS Code, ist ein kostenloser Quellcode-Editor – oder eine integrierte Entwicklungsumgebung (IDE) –, die für alle gängigen Betriebssysteme verfügbar ist. Mit einer großen Sammlung von Erweiterungen für viele Programmiersprachen kann VS Code c

Wenn Sie ein erfahrener PHP-Entwickler sind, haben Sie möglicherweise das Gefühl, dass Sie dort waren und dies bereits getan haben. Sie haben eine beträchtliche Anzahl von Anwendungen entwickelt, Millionen von Codezeilen debuggt und eine Reihe von Skripten optimiert, um op zu erreichen

Dieses Tutorial zeigt, wie XML -Dokumente mit PHP effizient verarbeitet werden. XML (Extensible Markup-Sprache) ist eine vielseitige textbasierte Markup-Sprache, die sowohl für die Lesbarkeit des Menschen als auch für die Analyse von Maschinen entwickelt wurde. Es wird üblicherweise für die Datenspeicherung ein verwendet und wird häufig verwendet

JWT ist ein offener Standard, der auf JSON basiert und zur sicheren Übertragung von Informationen zwischen Parteien verwendet wird, hauptsächlich für die Identitätsauthentifizierung und den Informationsaustausch. 1. JWT besteht aus drei Teilen: Header, Nutzlast und Signatur. 2. Das Arbeitsprinzip von JWT enthält drei Schritte: Generierung von JWT, Überprüfung von JWT und Parsingnayload. 3. Bei Verwendung von JWT zur Authentifizierung in PHP kann JWT generiert und überprüft werden, und die Funktionen und Berechtigungsinformationen der Benutzer können in die erweiterte Verwendung aufgenommen werden. 4. Häufige Fehler sind Signaturüberprüfungsfehler, Token -Ablauf und übergroße Nutzlast. Zu Debugging -Fähigkeiten gehört die Verwendung von Debugging -Tools und Protokollierung. 5. Leistungsoptimierung und Best Practices umfassen die Verwendung geeigneter Signaturalgorithmen, das Einstellen von Gültigkeitsperioden angemessen.

Eine Zeichenfolge ist eine Folge von Zeichen, einschließlich Buchstaben, Zahlen und Symbolen. In diesem Tutorial wird lernen, wie Sie die Anzahl der Vokale in einer bestimmten Zeichenfolge in PHP unter Verwendung verschiedener Methoden berechnen. Die Vokale auf Englisch sind a, e, i, o, u und sie können Großbuchstaben oder Kleinbuchstaben sein. Was ist ein Vokal? Vokale sind alphabetische Zeichen, die eine spezifische Aussprache darstellen. Es gibt fünf Vokale in Englisch, einschließlich Großbuchstaben und Kleinbuchstaben: a, e, ich, o, u Beispiel 1 Eingabe: String = "TutorialPoint" Ausgabe: 6 erklären Die Vokale in der String "TutorialPoint" sind u, o, i, a, o, ich. Insgesamt gibt es 6 Yuan

Statische Bindung (statisch: :) implementiert die späte statische Bindung (LSB) in PHP, sodass das Aufrufen von Klassen in statischen Kontexten anstatt Klassen zu definieren. 1) Der Analyseprozess wird zur Laufzeit durchgeführt.

Was sind die magischen Methoden von PHP? Zu den magischen Methoden von PHP gehören: 1. \ _ \ _ Konstrukt, verwendet, um Objekte zu initialisieren; 2. \ _ \ _ Destruct, verwendet zur Reinigung von Ressourcen; 3. \ _ \ _ Call, behandeln Sie nicht existierende Methodenaufrufe; 4. \ _ \ _ GET, Implementieren Sie den dynamischen Attributzugriff; 5. \ _ \ _ Setzen Sie dynamische Attributeinstellungen. Diese Methoden werden in bestimmten Situationen automatisch aufgerufen, wodurch die Code -Flexibilität und -Effizienz verbessert werden.
