Heim > Datenbank > MySQL-Tutorial > So verwenden Sie den Decimal-Typ in der MySQL-Datenbank

So verwenden Sie den Decimal-Typ in der MySQL-Datenbank

WBOY
Freigeben: 2023-05-28 10:46:05
nach vorne
5464 Leute haben es durchsucht

    1 Hintergrund

    Zahlenoperationen sind eine sehr häufige Anforderung in Datenbanken, wie zum Beispiel die Berechnung von Menge, Gewicht, Preis usw Um verschiedene Anforderungen zu erfüllen, unterstützen Datenbanksysteme normalerweise präzise numerische Typen und ungefähre numerische Typen. Die Dezimalpunktposition dieser Typen wird während des Berechnungsprozesses festgelegt, und ihre Ergebnisse und ihr Verhalten werden festgelegt Dieses Problem ist besonders wichtig, wenn es um Geld geht. Daher implementieren einige Datenbanken einen speziellen Geldtyp, z. B. Float, Double usw., und die Genauigkeit dieser Zahlen ist Floating. 2 Verwendung des Dezimaltyps

    Die Verwendung von Dezimalzahlen ist in den meisten Datenbanken ähnlich. Im Folgenden wird die Dezimalzahl von MySQL als Beispiel verwendet, um die grundlegende Verwendung von Dezimalstellen vorzustellen.

    2.1 Beschreibung von Dezimalzahlen

    # 🎜🎜#Im Gegensatz zu Float und Double müssen bei der Erstellung zwei Zahlen angegeben werden, die die Genauigkeit beschreiben, nämlich Präzision und Skalierung. Präzision bezieht sich auf die Anzahl der Zahlen in der gesamten Dezimalzahl, einschließlich der Ganzzahl- und Dezimalteile. Skala bezieht sich auf den Dezimalteil der Dezimalzahl, zum Beispiel: 123,45 ist eine Dezimalzahl mit Genauigkeit=5, Skala=2. Wir können die gewünschte Dezimalzahl beim Erstellen der Tabelle definieren. 🎜🎜#2.2 Dezimalzahl beim Erstellen der Tabelle definieren

    Sie können beim Erstellen einer Tabelle eine Dezimalzahl wie folgt definieren:

    create table t(d decimal(5, 2));
    Nach dem Login kopieren

    2.3 Dezimaldaten schreiben

    #🎜🎜 #Sie können beispielsweise rechtliche Daten einfügen# 🎜🎜#
    insert into t values(123.45);
    insert into t values(123.4);
    Nach dem Login kopieren

    Zu diesem Zeitpunkt wird bei der Ausführung von „select * from t“

    +--------+
    | d      |
    +--------+
    | 123.45 |
    | 123.40 |
    +--------+
    Nach dem Login kopieren

    Beachten Sie, dass 123,4 zu 123,40 geworden ist Charakteristisch für den genauen Typ. Jede Datenzeile in Spalte d erfordert eine Skalierung von zwei Dezimalstellen. Die Zahl scheint die Anforderungen zu erfüllen, muss jedoch tatsächlich die Anforderungen erfüllen Maßstab = 2, also 1234,50 (Genauigkeit = 6, Maßstab = 2), was die Anforderungen nicht erfüllt.

    2.4 Nehmen Sie Deimcal für die Berechnung heraus sind nicht durch die Definition eingeschränkt, sondern werden durch das interne Implementierungsformat beeinflusst. Bei MySQL kann das maximale Ergebnis Präzision = 81, Skalierung = 30 sein, aber aufgrund des Speicherformats und der Berechnungsfunktionsimplementierung von MySQL ist das Problem Größe kann nicht in allen Situationen erreicht werden, was später im Detail vorgestellt wird:

    insert into t values(1123.45);
    ERROR 1264 (22003): Out of range value for column 'd' at row 1
    insert into t values(123.456);
    Query OK, 1 row affected, 1 warning
    show warnings;
    +-------+------+----------------------------------------+
    | Level | Code | Message                                |
    +-------+------+----------------------------------------+
    | Note  | 1265 | Data truncated for column 'd' at row 1 |
    +-------+------+----------------------------------------+
    select * from t;
    +--------+
    | d      |
    +--------+
    | 123.46 |
    +--------+
    Nach dem Login kopieren

    Das Ergebnis durchbricht die Einschränkungen von Präzision = 5, Skala = 2 und es sind Operationen beteiligt hier Wenn sich die Skala ändert, sind die Grundregeln:

    Addition/Subtraktion/Summe: Nehmen Sie die größte Skala auf beiden Seiten

    #🎜 🎜##🎜 🎜#Multiplikation: Addiere die Skalen auf beiden Seiten

    Division: Skala des Dividenden + div_precision_increment (abhängig von der Datenbankimplementierung)

    # 🎜🎜#

    3 Implementierung des Decimal-Typs

      In diesem Teil stellen wir hauptsächlich die Implementierung von Decimal in MySQL vor. Darüber hinaus werden wir auch ClickHouse vergleichen, um die Unterschiede zu erkennen beim Entwurf und der Implementierung von Dezimalzahlen in verschiedenen Systemen Skala wird unterstützt
    1. #🎜🎜 #Wo soll die Skala gespeichert werden
    2. Während der kontinuierlichen Multiplikation oder Division wächst die Skala weiter , der ganzzahlige Teil wächst ebenfalls weiter und die gespeicherte Puffergröße hat immer eine Obergrenze. Wie soll damit umgegangen werden?
    3. Division kann zu unendlichen Dezimalstellen führen?

    Die Darstellung Bereich von decimal und Gibt es einen Konflikt in der Rechenleistung? Kann beides berücksichtigt werden? 9 Zahlen werden verwendet, um die Anzahl der Ziffern im ganzzahligen Teil darzustellen, und frac stellt die Anzahl der Ziffern dar, sign stellt das Vorzeichen dar. Der Dezimalteil und der ganzzahlige Teil müssen separat gespeichert werden in einem decimal_digit_t. Dies liegt daran, dass ganze Zahlen und Dezimalzahlen normalerweise separat berechnet werden müssen, sodass dieses Format einfacher sein kann. Richten Sie verschiedene decimal_t-Dezimalzahlen bzw. ganze Zahlen aus, um Additions- und Subtraktionsoperationen zu erleichtern In der MySQL-Implementierung stellt dies die Obergrenze des Speichers dar und der tatsächliche effektive Teil von buf wird durch intg und frac bestimmt. Beispiel: #🎜 🎜#
    select d + 9999.999 from t;
    +--------------+
    | d + 9999.999 |
    +--------------+
    |    10123.459 |
    +--------------+
    Nach dem Login kopieren

    MySQL muss zum Speichern zwei decimal_digit_t (int32) verwenden 123,45, die erste davon ist 123, kombiniert mit intg=3, was bedeutet, dass der ganzzahlige Teil 123 ist, und die zweite Zahl ist 450000000 (insgesamt 9). Da frac=2 bedeutet dies, dass der Dezimalteil ist. 45

    Sehen wir uns ein größeres Beispiel an:

    typedef int32 decimal_digit_t;
    
    struct decimal_t {
      int intg, frac, len;
      bool sign;
      decimal_digit_t *buf;
    };
    Nach dem Login kopieren
      In diesem Beispiel werden 81 Zahlen verwendet, aber es gibt auch Szenarien, in denen nicht die vollständigen 81 Ziffern verwendet werden können Ganzzahl- und Dezimalteile werden getrennt gespeichert, sodass ein decimal_digit_t (int32) möglicherweise nur eine gültige Dezimalstelle speichert, der Rest jedoch nicht vom Ganzzahlteil verwendet werden kann. Beispielsweise hat eine Dezimalzahl 62 Stellen im Ganzzahlteil und 19 Stellen im Dezimalteil Teil (Genauigkeit = 81, Skala = 19), daher muss der Dezimalteil 3 decimal_digit_t (int32) verwenden, und der ganzzahlige Teil hat noch 54 Ziffern, die nicht gespeichert werden können. In diesem Fall gibt MySQL Priorität auf den ganzzahligen Teil, schneidet den Teil nach dem Dezimalpunkt automatisch ab und wandelt ihn in eine Dezimalzahl um (80, 18)
    1. 接下来看看 MySQL 如何在这个数据结构上进行运算. MySQL 通过一系列 decimal_digit_t(int32) 来表示一个较大的 decimal, 其计算也是对这个数组中的各个 decimal_digit_t 分别进行, 如同我们在小学数学计算时是一个数字一个数字地计算, MySQL 会把每个 decimal_digit_t 当作一个数字来进行计算、进位. 由于代码较长, 这里不再对具体的代码进行完整的分析, 仅对代码中核心部分进行分析, 如果感兴趣, 可以直接参考 MySQL 源码 strings/decimal.h 和 strings/decimal.cc 中的 decimal_add, decimal_mul, decimal_div 等代码.

      准备步骤

      在真正计算前, 还需要做一些准备工作:

      1. MySQL 会将数字的个数 ROUND_UP 到 9 的整数倍, 这样后面就可以按照 decimal_digit_t 为单位来进行计算

      2. 此外还要针对参与运算的两个 decimal 的具体情况, 计算结果的 precision 和 scale, 如果发现结果的 precision 超过了支持的上限, 那么会按照 decimal_digit_t 为单位减少小数的数字.

      3. 在乘法过程中, 如果发生了 2 中的减少行为, 则需要 TRUNCATE 两个运算数, 避免中间结果超出范围.

      加法主要步骤

      首先, 因为两个数字的 precision 和 scale 可能不相同, 需要做一些准备工作, 将小数点对齐, 然后开始计算, 从最末尾小数开始向高位加, 分为三个步骤:

      1. 将小数较多的 decimal 多出的小数数字复制到结果中

      2. 将两个 decimal 公共的部分相加

      3. 将整数较多的 decimal 多出的整数数字与进位相加到结果中

      代码中使用了 stop, stop2 来标记小数点对齐后, 长度不同的数字出现差异的位置.

      /* part 1 - max(frac) ... min (frac) */
      while (buf1 > stop) *--buf0 = *--buf1;
      
      /* part 2 - min(frac) ... min(intg) */
      carry = 0;
      while (buf1 > stop2) {
        ADD(*--buf0, *--buf1, *--buf2, carry);
      }
      
      /* part 3 - min(intg) ... max(intg) */
      buf1 = intg1 > intg2 ? ((stop3 = from1->buf) + intg1 - intg2)
                           : ((stop3 = from2->buf) + intg2 - intg1);
      while (buf1 > stop3) {
        ADD(*--buf0, *--buf1, 0, carry);
      }
      Nach dem Login kopieren

      So verwenden Sie den Decimal-Typ in der MySQL-Datenbank

      乘法主要步骤

      乘法引入了一个新的 dec2, 表示一个 64 bit 的数字, 这是因为两个 decimal_digit_t(int32) 相乘后得到的可能会是一个 64 bit 的数字. 在计算时一定要先把类型转换到 dec2(int64), 再计算, 否则会得到溢出后的错误结果. 乘法与加法不同, 乘法不需要对齐, 例如计算 11.11 5.0, 那么只要计算 111150=55550, 再移动小数点位置就能得到正确结果 55.550

      MySQL 实现了一个双重循环将 decimal1 的 每一个 decimal_digit_t 与 decimal2 的每一个 decimal_digit_t 相乘, 得到一个 64 位的 dec2, 其低 32 位是当前的结果, 其高 32 位是进位.

      typedef decimal_digit_t dec1;
      typedef longlong dec2;
      Nach dem Login kopieren
      for (buf1 += frac1 - 1; buf1 >= stop1; buf1--, start0--) {
        carry = 0;
        for (buf0 = start0, buf2 = start2; buf2 >= stop2; buf2--, buf0--) {
          dec1 hi, lo;
          dec2 p = ((dec2)*buf1) * ((dec2)*buf2);
          hi = (dec1)(p / DIG_BASE);
          lo = (dec1)(p - ((dec2)hi) * DIG_BASE);
          ADD2(*buf0, *buf0, lo, carry);
          carry += hi;
        }
        if (carry) {
          if (buf0 < to->buf) return E_DEC_OVERFLOW;
          ADD2(*buf0, *buf0, 0, carry);
        }
        for (buf0--; carry; buf0--) {
          if (buf0 < to->buf) return E_DEC_OVERFLOW;
          ADD(*buf0, *buf0, 0, carry);
        }
      }
      Nach dem Login kopieren

      除法主要步骤

      除法使用的是 Knuth's Algorithm D, 其基本思路和手动除法也比较类似.

      首先使用除数的前两个 decimal_digit_t 组成一个试商因数, 这里使用了一个 norm_factor 来保证数字在不溢出的情况下尽可能扩大, 这是因为 decimal 为了保证精度必须使用整形来进行计算, 数字越大, 得到的结果就越准确. D3: 猜商, 就是用被除数的前两个 decimal_digit_t 除以试商因数 这里如果不乘 norm_factor, 则 start1[1] 和 start2[1] 都不会体现在结果之中.

      D4: 将 guess 与除数相乘, 再从被除数中剪掉结果 然后做一些修正, 移动向下一个 decimal_digit_t, 重复这个过程.

      想更详细地了解这个算法可以参考 https://skanthak.homepage.t-online.de/division.html

      norm2 = (dec1)(norm_factor * start2[0]);
      if (likely(len2 > 0)) norm2 += (dec1)(norm_factor * start2[1] / DIG_BASE);
      Nach dem Login kopieren
      x = start1[0] + ((dec2)dcarry) * DIG_BASE;
      y = start1[1];
      guess = (norm_factor * x + norm_factor * y / DIG_BASE) / norm2;
      Nach dem Login kopieren
      for (carry = 0; buf2 > start2; buf1--) {
        dec1 hi, lo;
        x = guess * (*--buf2);
        hi = (dec1)(x / DIG_BASE);
        lo = (dec1)(x - ((dec2)hi) * DIG_BASE);
        SUB2(*buf1, *buf1, lo, carry);
        carry += hi;
      }
      carry = dcarry < carry;
      Nach dem Login kopieren

      3.2 ClickHouse

      ClickHouse 是列存, 相同列的数据会放在一起, 因此计算时通常也将一列的数据合成 batch 一起计算.

      So verwenden Sie den Decimal-Typ in der MySQL-Datenbank

      一列的 batch 在 ClickHouse 中使用 PODArray, 例如上图中的 c1 在计算时就会有一个 PODArray, 进行简化后大致可以表示如下:

      class PODArray {
          char * c_start          = null;
          char * c_end            = null;
          char * c_end_of_storage = null;
      }
      Nach dem Login kopieren

      在计算时会讲 c_start 指向的数组转换成实际的类型, 对于 decimal, ClickHouse 使用足够大的 int 来表示, 根据 decimal 的 precision 选择 int32, int64 或者 int128. 例如一个 decimal(10, 2), 123.45, 使用这样方式可以表示为一个 int32_t, 其内容为 12345, decimal(10, 3) 的 123.450 表示为 123450. ClickHouse 用来表示每个 decimal 的结构如下, 实际上就是足够大的 int:

      template <typename T>
      struct Decimal
      {
          using NativeType = T;
          // ...
          T value;
      };
      using Int32 = int32_t;
      using Int64 = int64_t;
      using Int128 = __int128;
      using Decimal32 = Decimal<Int32>;
      using Decimal64 = Decimal<Int64>;
      using Decimal128 = Decimal<Int128>;
      Nach dem Login kopieren

      显而易见, 这样的表示方法相较于 MySQL 的方法更轻量, 但是范围更小, 同时也带来了一个问题是没有小数点的位置, 在进行加减法、大小比较等需要小数点对齐的场景下, ClickHouse 会在运算实际发生的时候将 scale 以参数的形式传入, 此时配合上面的数字就可以正确地还原出真实的 decimal 值了.

      ResultDataType type = decimalResultType(left, right, is_multiply, is_division);
      
      int scale_a = type.scaleFactorFor(left, is_multiply);
      int scale_b = type.scaleFactorFor(right, is_multiply || is_division);
      OpImpl::vector_vector(col_left->getData(), col_right->getData(), vec_res,
                            scale_a, scale_b, check_decimal_overflow);
      Nach dem Login kopieren

      例如两个 decimal: a = 123.45000(p=8, s=5), b = 123.4(p=4, s=1), 那么计算时传入的参数就是 col_left->getData() = 123.45000 10 ^ 5 = 12345000, scale_a = 1, col_right->getData() = 123.4 10 ^ 1 = 1234, scale_b = 10000, 12345000 1 和 1234 10000 的小数点位置是对齐的, 可以直接计算.

      加法主要步骤

      ClickHouse 实现加法同样要先对齐, 对齐的方法是将 scale 较小的数字乘上一个系数, 使两边的 scale 相等. 然后直接做加法即可. ClickHouse 在计算中也根据 decimal 的 precision 进行了细分, 对于长度没那么长的 decimal, 直接用 int32, int64 等原生类型计算就可以了, 这样大大提升了速度.

      bool overflow = false;
      if constexpr (scale_left)
          overflow |= common::mulOverflow(a, scale, a);
      else
          overflow |= common::mulOverflow(b, scale, b);
      
      overflow |= Op::template apply<NativeResultType>(a, b, res);
      Nach dem Login kopieren
      template <typename T>
      inline bool addOverflow(T x, T y, T & res)
      {
          return __builtin_add_overflow(x, y, &res);
      }
      
      template <>
      inline bool addOverflow(__int128 x, __int128 y, __int128 & res)
      {
          static constexpr __int128 min_int128 = __int128(0x8000000000000000ll) << 64;
          static constexpr __int128 max_int128 = (__int128(0x7fffffffffffffffll) << 64) + 0xffffffffffffffffll;
          res = x + y;
          return (y > 0 && x > max_int128 - y) || (y < 0 && x < min_int128 - y);
      }
      Nach dem Login kopieren

      乘法主要步骤

      同 MySQL, 乘法不需要对齐, 直接按整数相乘就可以了, 比较短的 decimal 同样可以使用 int32, int64 原生类型. int128 在溢出检测时被转换成 unsigned int128 避免溢出时的未定义行为.

      template <typename T>
      inline bool mulOverflow(T x, T y, T & res)
      {
          return __builtin_mul_overflow(x, y, &res);
      }
      
      template <>
      inline bool mulOverflow(__int128 x, __int128 y, __int128 & res)
      {
          res = static_cast<unsigned __int128>(x) * static_cast<unsigned __int128>(y);    /// Avoid signed integer overflow.
          if (!x || !y)
              return false;
      
          unsigned __int128 a = (x > 0) ? x : -x;
          unsigned __int128 b = (y > 0) ? y : -y;
          return (a * b) / b != a;
      }
      Nach dem Login kopieren

      除法主要步骤

      先转换 scale 再直接做整数除法. 本身来讲除法和乘法一样是不需要对齐小数点的, 但是除法不一样的地方在于可能会产生无限小数, 所以一般数据库都会给结果一个固定的小数位数, ClickHouse 选择的小数位数是和被除数一样, 因此需要将 a 乘上 scale, 然后在除法运算的过程中, 这个 scale 被自然减去, 得到结果的小数位数就可以保持和被除数一样.

      bool overflow = false;
      if constexpr (!IsDecimalNumber<A>)
          overflow |= common::mulOverflow(scale, scale, scale);
      overflow |= common::mulOverflow(a, scale, a);
      if (overflow)
          throw Exception("Decimal math overflow", ErrorCodes::DECIMAL_OVERFLOW);
      
      return Op::template apply<NativeResultType>(a, b);
      Nach dem Login kopieren

      3.3 总结

      MySQL 通过一个 int32 的数组来表示一个大数, ClickHouse 则是尽可能使用原生类型, GCC 和 Clang 都支持 int128 扩展, 这使得 ClickHouse 的这种做法可以比较方便地实现.

      MySQL 与 ClickHouse 的实现差别还是比较大的, 针对我们开始提到的问题, 分别来看看他们的解答.

      1. precision 和 scale 范围, MySQL 最高可定义 precision=65, scale=30, 中间结果最多包含 81 个数字, ClickHouse 最高可定义 precision=38, scale=37, 中间结果最大为 int128 的最大值 -2^127 ~ 2^127-1.

      2. 在哪里存储 scale, MySQL 是行式存储, 使用火山模型逐行迭代, 计算也是按行进行, 每个 decimal 都有自己的 scale;ClickHouse 是列式存储, 计算按列批量进行, 每行按照相同的 scale 处理能提升性能, 因此 scale 来自表达式解析过程中推导出来的类型.

      3. scale 增长, scale 增长超过极限时, MySQL 会通过动态挤占小数空间, truncate 运算数, 尽可能保证计算完成, ClickHouse 会直接报溢出错.

      4. 除法 scale, MySQL 通过 div_prec_increment 来控制除法结果的 scale, ClickHouse 固定使用被除数的 scale.

      5. 性能, MySQL 使用了更宽的 decimal 表示, 同时要进行 ROUND_UP, 小数挤占, TRUNCATE 等动作, 性能较差, ClickHouse 使用原生的数据类型和计算最大限度地提升了性能.

      4. MySQL 违反直觉的地方

      在这一部分中, 我们将讲述一些 MySQL 实现造成的违反直觉的地方. 这些行为通常发生在运算结果接近 81 digit 时, 因此如果可以保证运算结果的范围较小也可以忽略这些问题.

      1. 乘法的 scale 会截断到 31, 且该截断是通过截断运算数字的方式来实现的, 例如: select 10000000000000000000000000000000.100000000 10000000000000000000000000000000 = 10000000000000000000000000000000.100000000000000000000000000000 10000000000000000000000000000000.555555555555555555555555555555 返回 1, 第二个运算数中的 .555555555555555555555555555555 全部被截断

      2. MySQL 使用的 buffer 包含了 81 个 digit 的容量, 但是由于小数部分必须和整数部分分开, 因此很多时候无法用满 81 个 digit, 例如: select 99999999999999999999999999999999999999999999999999999999999999999999999999.999999 = 99999999999999999999999999999999999999999999999999999999999999999999999999.9 返回 1

      3. 计算过程中如果发现整数部分太大会动态地挤占小数部分, 例如: select 999999999999999999999999999999999999999999999999999999999999999999999999.999999999 + 999999999999999999999999999999999999999999999999999999999999999999999999.999999999 = 999999999999999999999999999999999999999999999999999999999999999999999999 + 999999999999999999999999999999999999999999999999999999999999999999999999 返回 1

      4. 除法计算中间结果不受 scale = 31 的限制, 除法中间结果的 scale 一定是 9 的整数倍, 不能按照最终结果来推测除法作为中间结果的精度, 例如 select 2.0000 / 3 3 返回 2.00000000, 而 select 2.00000 / 3 3 返回 1.999999998, 可见前者除法的中间结果其实保留了更多的精度.

      5. 除法, avg 计算最终结果的小数部分如果正好是 9 的倍数, 则不会四舍五入, 例如: select 2.00000 / 3 返回 0.666666666, select 2.0000 / 3 返回 0.66666667

      6. 除法, avg 计算时, 运算数字的小数部分如果不是 9 的倍数, 那么会实际上存储 9 的倍数个小数数字, 因此会出现以下差异:

      create table t1 (a decimal(20, 2), b decimal(20, 2), c integer);
      
      insert into t1 values (100000.20, 1000000.10,   5);
      insert into t1 values (200000.20, 2000000.10,   2);
      insert into t1 values (300000.20, 3000000.10,   4);
      insert into t1 values (400000.20, 4000000.10,   6);
      insert into t1 values (500000.20, 5000000.10,   8);
      insert into t1 values (600000.20, 6000000.10,   9);
      insert into t1 values (700000.20, 7000000.10,   8);
      insert into t1 values (800000.20, 8000000.10,   7);
      insert into t1 values (900000.20, 9000000.10,   7);
      insert into t1 values (1000000.20, 10000000.10, 2);
      insert into t1 values (2000000.20, 20000000.10, 5);
      insert into t1 values (3000000.20, 30000000.10, 2);
      
      select sum(a+b), avg(c), sum(a+b) / avg(c) from t1;
      +--------------+--------+-------------------+
      | sum(a+b)     | avg(c) | sum(a+b) / avg(c) |
      +--------------+--------+-------------------+
      | 115500003.60 | 5.4167 |   21323077.590317 |
      +--------------+--------+-------------------+
      1 row in set (0.01 sec)
      
      select 115500003.60 / 5.4167;
      +-----------------------+
      | 115500003.60 / 5.4167 |
      +-----------------------+
      |       21322946.369561 |
      +-----------------------+
      1 row in set (0.00 sec)
      Nach dem Login kopieren

      Das obige ist der detaillierte Inhalt vonSo verwenden Sie den Decimal-Typ in der MySQL-Datenbank. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

    Verwandte Etiketten:
    Quelle:yisu.com
    Erklärung dieser Website
    Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
    Beliebte Tutorials
    Mehr>
    Neueste Downloads
    Mehr>
    Web-Effekte
    Quellcode der Website
    Website-Materialien
    Frontend-Vorlage