


So implementieren Sie die Knotenklassifizierung und -visualisierung in Python basierend auf Node2Vec
Einführung
Node2vec ist eine Methode zum Einbetten von Diagrammen, die für Aufgaben wie Knotenklassifizierung, Community-Erkennung und Verbindungsvorhersage verwendet werden kann.
Implementierungsprozess
Laden des Datensatzes
Lassen Sie uns zunächst die erforderliche Python-Bibliothek laden und den folgenden Code ausführen, um den Cora-Datensatz zu laden:
import networkx as nx import numpy as np import pandas as pd import matplotlib.pyplot as plt %matplotlib inline from sklearn.manifold import TSNE from node2vec import Node2Vec # 加载Cora数据集 cora = pd.read_csv('cora/cora.content', sep='\t', header=None) cited_in = pd.read_csv('cora/cora.cites', sep='\t', header=None, names=['target', 'source']) nodes, features = cora.iloc[:, :-1], cora.iloc[:, -1]
wobei cora.content
alle Informationen zu Knotenfunktionen enthält , mit insgesamt 2708 Knoten und 1433 Features; und cora.cites
verwendet Zitatzuordnung, um eine gerichtete Kantenbeziehung zwischen Knoten für jeden der Knoten herzustellen, mit insgesamt 5429 Kanten. Als nächstes müssen wir Knotenmerkmale und Referenzinformationen zusammenführen, um die Diagrammstruktur aufzubauen. cora.content
包含了所有节点特征信息,一共具有2708个节点和1433个特征;而 cora.cites
通过引文映射分别针对所述每个节点建立一个节点间的有向边关系,共有5429个边。接下来,我们需要将节点特征和引用信息合并,构建图结构。
# 定义函数:构造基于Cora数据集的图结构 def create_graph(nodes, features, cited_in): nodes.index = nodes.index.map(str) graph = nx.from_pandas_edgelist(cited_in, source='source', target='target') for index, row in nodes.iterrows(): node_id = str(row[0]) features = row.drop(labels=[0]) node_attrs = {f'attr_{i}': float(x) for i, x in enumerate(features)} if graph.has_node(node_id) == True: temp = graph.nodes[node_id] temp.update(node_attrs) graph.add_nodes_from([(node_id, temp)]) else: graph.add_nodes_from([(node_id, node_attrs)]) return graph # 构建图 graph = create_graph(nodes, features, cited_in)
该函数将 cora.content
中的节点特征与 cora.cites
# 定义函数:创建基于Cora数据集的嵌入 def create_embeddings(graph): # 初始化node2vec实例,指定相关超参数 n2v = Node2Vec(graph, dimensions=64, walk_length=30, num_walks=200, p=1, q=1, weight_key='attr_weight') # 基于指定参数训练得到嵌入向量表达式 model = n2v.fit(window=10, min_count=1, batch_words=4) # 获得所有图中节点的嵌入向量 embeddings = pd.DataFrame(model.wv.vectors) ids = list(map(str, model.wv.index2word)) # 将原有的特征和id与新获取到的嵌入向量按行合并 lookup_table = nodes.set_index(0).join(embeddings.set_index(embeddings.index)) return np.array(lookup_table.dropna().iloc[:, -64:]), np.array(list(range(1, lookup_table.shape[0] + 1))) # 创建嵌入向量 cora_embeddings, cora_labels = create_embeddings(graph)
cora.content
mit den gerichteten Kanten von cora.cites
und beschriftet sie im Diagramm. Jetzt haben wir eine grafische Ansicht erstellt, die es uns ermöglicht, unsere Ideen zu visualisieren. Einbetten von Daten mit Node2vecUm die Knotenmerkmalsklassifizierung durchzuführen, müssen wir einige Informationen aus dem Netzwerk extrahieren und sie als Eingabe an den Klassifikator übergeben. Ein Beispiel ist die Verwendung der Knoten-2-Vektormethode, um die extrahierten Informationen in einen Vektorausdruck umzuwandeln, sodass jeder Knoten mindestens eine Dimension hat. Durch die Entnahme von Zufallsstichproben vom Startknoten zum Zielknoten lernt das Node2Vec-Modell einen Vektor, der jeden Knoten darstellt. Das Node-2Vec-Modell definiert die Übergangswahrscheinlichkeiten zwischen Knoten während eines Random Walk. Wir werden die Bibliothek node2vec verwenden, um eine eingebettete Darstellung des Diagramms zu generieren und ein neuronales Netzwerk zur Knotenklassifizierung verwenden. from sklearn import svm, model_selection, metrics # 使用支持向量机作为示范的分类器 svm_model = svm.SVC(kernel='rbf', C=1, gamma=0.01) # 进行交叉验证和分类训练 scores = model_selection.cross_val_score( svm_model, cora_embeddings, cora_labels, cv=5) print(scores.mean())
# 定义函数:可视化Nodes2Vec的结果 def visualize_results(embeddings, labels): # 使用t-SNE对数据进行降维并绘图 tsne = TSNE(n_components=2, verbose=1, perplexity=40, n_iter=300) tsne_results = tsne.fit_transform(embeddings) plt.figure(figsize=(10, 5)) plt.scatter(tsne_results[:,0], tsne_results[:,1], c=labels) plt.colorbar() plt.show() # 可视化结果 visualize_results(cora_embeddings, cora_labels)
rrreee
Der von Node2Vec generierte Einbettungsvektor wird in t-SNE eingegeben, wobei t-SNE die Dimensionalität des 64-dimensionalen Vektorausdrucks reduziert und ein zweidimensionales Streudiagramm ausgibt, das wir mithilfe der Matplotlib-Bibliothek visualisieren können. Ob die meisten relevanten Knoten eng geclustert sind, kann in der grafischen Oberfläche überprüft werden. 🎜Das obige ist der detaillierte Inhalt vonSo implementieren Sie die Knotenklassifizierung und -visualisierung in Python basierend auf Node2Vec. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



MySQL hat eine kostenlose Community -Version und eine kostenpflichtige Enterprise -Version. Die Community -Version kann kostenlos verwendet und geändert werden, die Unterstützung ist jedoch begrenzt und für Anwendungen mit geringen Stabilitätsanforderungen und starken technischen Funktionen geeignet. Die Enterprise Edition bietet umfassende kommerzielle Unterstützung für Anwendungen, die eine stabile, zuverlässige Hochleistungsdatenbank erfordern und bereit sind, Unterstützung zu bezahlen. Zu den Faktoren, die bei der Auswahl einer Version berücksichtigt werden, gehören Kritikalität, Budgetierung und technische Fähigkeiten von Anwendungen. Es gibt keine perfekte Option, nur die am besten geeignete Option, und Sie müssen die spezifische Situation sorgfältig auswählen.

Hadidb: Eine leichte, hochrangige skalierbare Python-Datenbank Hadidb (HadIDB) ist eine leichte Datenbank in Python mit einem hohen Maß an Skalierbarkeit. Installieren Sie HadIDB mithilfe der PIP -Installation: PipinstallHadIDB -Benutzerverwaltung erstellen Benutzer: createUser (), um einen neuen Benutzer zu erstellen. Die Authentication () -Methode authentifiziert die Identität des Benutzers. fromHadidb.operationImportUseruser_obj = user ("admin", "admin") user_obj.

MySQL Workbench kann eine Verbindung zu MariADB herstellen, vorausgesetzt, die Konfiguration ist korrekt. Wählen Sie zuerst "Mariadb" als Anschlusstyp. Stellen Sie in der Verbindungskonfiguration Host, Port, Benutzer, Kennwort und Datenbank korrekt ein. Überprüfen Sie beim Testen der Verbindung, ob der Mariadb -Dienst gestartet wird, ob der Benutzername und das Passwort korrekt sind, ob die Portnummer korrekt ist, ob die Firewall Verbindungen zulässt und ob die Datenbank vorhanden ist. Verwenden Sie in fortschrittlicher Verwendung die Verbindungspooling -Technologie, um die Leistung zu optimieren. Zu den häufigen Fehlern gehören unzureichende Berechtigungen, Probleme mit Netzwerkverbindung usw. Bei Debugging -Fehlern, sorgfältige Analyse von Fehlerinformationen und verwenden Sie Debugging -Tools. Optimierung der Netzwerkkonfiguration kann die Leistung verbessern

Es ist unmöglich, das MongoDB -Passwort direkt über Navicat anzuzeigen, da es als Hash -Werte gespeichert ist. So rufen Sie verlorene Passwörter ab: 1. Passwörter zurücksetzen; 2. Überprüfen Sie die Konfigurationsdateien (können Hash -Werte enthalten). 3. Überprüfen Sie Codes (May Hardcode -Passwörter).

Die MySQL -Verbindung kann auf die folgenden Gründe liegen: MySQL -Dienst wird nicht gestartet, die Firewall fängt die Verbindung ab, die Portnummer ist falsch, der Benutzername oder das Kennwort ist falsch, die Höradresse in my.cnf ist nicht ordnungsgemäß konfiguriert usw. Die Schritte zur Fehlerbehebung umfassen: 1. Überprüfen Sie, ob der MySQL -Dienst ausgeführt wird. 2. Passen Sie die Firewall -Einstellungen an, damit MySQL Port 3306 anhören kann. 3. Bestätigen Sie, dass die Portnummer mit der tatsächlichen Portnummer übereinstimmt. 4. Überprüfen Sie, ob der Benutzername und das Passwort korrekt sind. 5. Stellen Sie sicher, dass die Einstellungen für die Bindungsadresse in my.cnf korrekt sind.

MySQL kann ohne Netzwerkverbindungen für die grundlegende Datenspeicherung und -verwaltung ausgeführt werden. Für die Interaktion mit anderen Systemen, Remotezugriff oder Verwendung erweiterte Funktionen wie Replikation und Clustering ist jedoch eine Netzwerkverbindung erforderlich. Darüber hinaus sind Sicherheitsmaßnahmen (wie Firewalls), Leistungsoptimierung (Wählen Sie die richtige Netzwerkverbindung) und die Datensicherung für die Verbindung zum Internet von entscheidender Bedeutung.

Die MySQL-Datenbankleistung Optimierungshandbuch In ressourcenintensiven Anwendungen spielt die MySQL-Datenbank eine entscheidende Rolle und ist für die Verwaltung massiver Transaktionen verantwortlich. Mit der Erweiterung der Anwendung werden jedoch die Datenbankleistung Engpässe häufig zu einer Einschränkung. In diesem Artikel werden eine Reihe effektiver Strategien zur Leistungsoptimierung von MySQL -Leistung untersucht, um sicherzustellen, dass Ihre Anwendung unter hohen Lasten effizient und reaktionsschnell bleibt. Wir werden tatsächliche Fälle kombinieren, um eingehende Schlüsseltechnologien wie Indexierung, Abfrageoptimierung, Datenbankdesign und Caching zu erklären. 1. Das Design der Datenbankarchitektur und die optimierte Datenbankarchitektur sind der Eckpfeiler der MySQL -Leistungsoptimierung. Hier sind einige Kernprinzipien: Die Auswahl des richtigen Datentyps und die Auswahl des kleinsten Datentyps, der den Anforderungen entspricht, kann nicht nur Speicherplatz speichern, sondern auch die Datenverarbeitungsgeschwindigkeit verbessern.

Als Datenprofi müssen Sie große Datenmengen aus verschiedenen Quellen verarbeiten. Dies kann Herausforderungen für das Datenmanagement und die Analyse darstellen. Glücklicherweise können zwei AWS -Dienste helfen: AWS -Kleber und Amazon Athena.
