


Wie verwende ich den Chi-Quadrat-Test für die statistische Analyse in Python?
Als wichtige statistische Methode ist der Chi-Quadrat-Test eine der am häufigsten verwendeten Testmethoden für die Beziehung zwischen kategorialen Variablen. In Python stellt die SciPy-Bibliothek die Chi-Quadrat-Funktion zur Durchführung von Chi-Quadrat-Tests bereit. In diesem Artikel werden das Prinzip, die Verwendung und Implementierungsbeispiele des Chi-Quadrat-Tests vorgestellt, um den Lesern zu helfen, den Chi-Quadrat-Test besser zu verstehen und anzuwenden.
1. Prinzip des Chi-Quadrat-Tests
Die Kernidee des Chi-Quadrat-Tests besteht darin, die Differenz zwischen dem tatsächlich beobachteten Wert und dem theoretischen Wert zu vergleichen. Wenn der Unterschied zwischen den beiden signifikant ist, bedeutet dies, dass zwischen den beiden Variablen eine Beziehung besteht. Der Chi-Quadrat-Test analysiert Daten in verschiedenen Dimensionen unterschiedlich. In diesem Artikel wird hauptsächlich das Prinzip des zweidimensionalen Chi-Quadrat-Tests vorgestellt.
Bei einer zweidimensionalen Tabelle geht der Chi-Quadrat-Test zunächst davon aus, dass zwischen den beiden Variablen keine Beziehung besteht, berechnet den erwarteten Wert E basierend auf der Annahme und berechnet dann das Chi -Quadratwert basierend auf dem tatsächlich beobachteten Wert O und dem erwarteten Wert E. Abschließend wird ein Signifikanztest durch Tabellensuche oder Berechnung durchgeführt, um festzustellen, ob die Hypothese begründet ist.
Die spezifische Berechnungsformel lautet wie folgt:
Chi-Quadrat-Wert χ²=(O-E)²/E
wobei O der tatsächlich beobachtete Wert ist und E ist der erwartete Wert.
Wenn der Chi-Quadrat-Wert größer ist, ist die Beziehung zwischen den beiden Variablen signifikanter, und umgekehrt wird die Hypothese abgelehnt, wenn der Chi-Quadrat-Wert kleiner ist. und die Hypothese wird akzeptiert.
2. Verwendung des Chi-Quadrat-Tests
- Datenvorbereitung
Bevor Sie den Chi-Quadrat-Test durchführen, Sie müssen gute Daten vorbereiten. Im Allgemeinen liegen Daten in Form einer zweidimensionalen Tabelle vor, die sowohl den tatsächlich beobachteten Wert O als auch den erwarteten Wert E enthält, wie unten gezeigt:
类别A 类别B
Variable 1 70 30
Variable 2 40 60
Unter diesen stellt 70 die Anzahl der Schnittpunkte zwischen Variable 1 und Kategorie A dar.
- Berechnen Sie den Chi-Quadrat-Wert basierend auf Daten
Mit der SciPy-Bibliothek in Python können Sie den Chi-Quadrat-Wert einfach berechnen und der entsprechende p-Wert. Der Code lautet wie folgt:
from scipy.stats import chisquare import numpy as np obs = np.array([[70, 30], [40, 60]]) #实际观测值 exp = np.array([[50, 50], [50, 50]]) #期望值 stat, pval = chisquare(obs.ravel(), f_exp=exp.ravel()) print(stat, pval)
Darunter wird die Chi-Quadrat-Funktion zur Berechnung des Chi-Quadrat-Werts und des entsprechenden p-Werts verwendet, obs und exp stellen den tatsächlich beobachteten Wert bzw. den erwarteten Wert dar und Die Funktion ravel() wandelt das zweidimensionale Array in ein dimensionales Array um, der Parameter f_exp gibt den erwarteten Wert an. Wenn er auf „None“ gesetzt ist, wird obs.sum()/4 als erwarteter Wert verwendet.
- Testen der Hypothese
Nachdem Sie den Chi-Quadrat-Wert und den p-Wert erhalten haben, müssen Sie feststellen, ob die Hypothese wahr ist. Im Allgemeinen wird das Signifikanzniveau α auf 0,05 festgelegt. Wenn der p-Wert kleiner oder gleich α ist, wird die Nullhypothese abgelehnt, was darauf hinweist, dass eine Beziehung zwischen den beiden Variablen besteht. Andernfalls wird die Nullhypothese akzeptiert es gibt keine Beziehung.
Der Code lautet wie folgt:
alpha = 0.05 if pval <= alpha: print("Reject null hypothesis, variables are related.") else: print("Accept null hypothesis, variables are independent.")
3. Implementierungsbeispiel
Das Folgende ist ein einfaches Beispiel, um die Verwendung des Chi-Quadrats zu demonstrieren prüfen. Angenommen, auf einer E-Commerce-Website wird ein A/B-Test durchgeführt, um zu testen, ob es Auswirkungen auf die Browsing-Zeit der Website gibt, nachdem sich Benutzer angemeldet haben. Die Daten lauten wie folgt:
浏览时长<10s 浏览时长>=10s
Login A 1000 2000
Login B 1500 2500
Zuerst müssen wir den Erwartungswert E berechnen. Der anhand der Daten berechnete Erwartungswert lautet wie folgt:
浏览时长<10s 浏览时长>=10s
Login A 1200 1800
Anmelden B 1300 1900
Verwenden Sie Python-Code, um Berechnungen und Hypothesentests wie folgt durchzuführen:
obs = np.array([[1000, 2000], [1500, 2500]]) #实际观测值 exp = np.array([[1200, 1800], [1300, 1900]]) #期望值 stat, pval = chisquare(obs.ravel(), f_exp=exp.ravel()) print(stat, pval) alpha = 0.05 if pval <= alpha: print("Reject null hypothesis, variables are related.") else: print("Accept null hypothesis, variables are independent.")
Das Endergebnis ist: Lehne die Nullhypothese ab, Dies zeigt an, dass die Anmeldemethode des Benutzers einen Einfluss auf die Browsing-Zeit hat.
4. Zusammenfassung
Der Chi-Quadrat-Test ist eine häufig verwendete Testmethode für die Beziehung zwischen kategorialen Variablen, mit der festgestellt werden kann, ob zwischen zwei Variablen eine Beziehung besteht. In Python kann der Chi-Quadrat-Test einfach mit der von der SciPy-Bibliothek bereitgestellten Chi-Quadrat-Funktion durchgeführt werden. Durch die Einführung dieses Artikels können Leser den Chi-Quadrat-Test besser verstehen und verwenden und die statistische Analyse von Daten kann standardisierter und wissenschaftlicher erfolgen.
Das obige ist der detaillierte Inhalt vonWie verwende ich den Chi-Quadrat-Test für die statistische Analyse in Python?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



PHP und Python haben jeweils ihre eigenen Vorteile und wählen nach den Projektanforderungen. 1.PHP ist für die Webentwicklung geeignet, insbesondere für die schnelle Entwicklung und Wartung von Websites. 2. Python eignet sich für Datenwissenschaft, maschinelles Lernen und künstliche Intelligenz mit prägnanter Syntax und für Anfänger.

Python zeichnet sich in Gaming und GUI -Entwicklung aus. 1) Spielentwicklung verwendet Pygame, die Zeichnungen, Audio- und andere Funktionen bereitstellt, die für die Erstellung von 2D -Spielen geeignet sind. 2) Die GUI -Entwicklung kann Tkinter oder Pyqt auswählen. Tkinter ist einfach und einfach zu bedienen. PYQT hat reichhaltige Funktionen und ist für die berufliche Entwicklung geeignet.

Die Readdir -Funktion im Debian -System ist ein Systemaufruf, der zum Lesen des Verzeichnisgehalts verwendet wird und häufig in der C -Programmierung verwendet wird. In diesem Artikel wird erläutert, wie Readdir in andere Tools integriert wird, um seine Funktionalität zu verbessern. Methode 1: Kombinieren Sie C -Sprachprogramm und Pipeline zuerst ein C -Programm, um die Funktion der Readdir aufzurufen und das Ergebnis auszugeben:#include#include#includeIntmain (intargc, char*argv []) {Dir*Dir; structDirent*Eintrag; if (argc! = 2) {{

Um die Effizienz des Lernens von Python in einer begrenzten Zeit zu maximieren, können Sie Pythons DateTime-, Zeit- und Zeitplanmodule verwenden. 1. Das DateTime -Modul wird verwendet, um die Lernzeit aufzuzeichnen und zu planen. 2. Das Zeitmodul hilft, die Studie zu setzen und Zeit zu ruhen. 3. Das Zeitplanmodul arrangiert automatisch wöchentliche Lernaufgaben.

In diesem Artikel werden Sie begleitet, wie Sie Ihr NginXSSL -Zertifikat auf Ihrem Debian -System aktualisieren. Schritt 1: Installieren Sie zuerst CertBot und stellen Sie sicher, dass Ihr System Certbot- und Python3-CertBot-Nginx-Pakete installiert hat. If not installed, please execute the following command: sudoapt-getupdatesudoapt-getinstallcertbotpython3-certbot-nginx Step 2: Obtain and configure the certificate Use the certbot command to obtain the Let'sEncrypt certificate and configure Nginx: sudocertbot--nginx Follow the prompts to select

Das Konfigurieren eines HTTPS -Servers auf einem Debian -System umfasst mehrere Schritte, einschließlich der Installation der erforderlichen Software, der Generierung eines SSL -Zertifikats und der Konfiguration eines Webservers (z. B. Apache oder NGINX) für die Verwendung eines SSL -Zertifikats. Hier ist eine grundlegende Anleitung unter der Annahme, dass Sie einen Apacheweb -Server verwenden. 1. Installieren Sie zuerst die erforderliche Software, stellen Sie sicher, dass Ihr System auf dem neuesten Stand ist, und installieren Sie Apache und OpenSSL: sudoaptupdatesudoaptupgradesudoaptinsta

Die Entwicklung eines Gitlab -Plugins für Debian erfordert einige spezifische Schritte und Kenntnisse. Hier ist ein grundlegender Leitfaden, mit dem Sie mit diesem Prozess beginnen können. Wenn Sie zuerst GitLab installieren, müssen Sie GitLab in Ihrem Debian -System installieren. Sie können sich auf das offizielle Installationshandbuch von GitLab beziehen. Holen Sie sich API Access Token, bevor Sie die API -Integration durchführen. Öffnen Sie das GitLab -Dashboard, finden Sie die Option "AccessTokens" in den Benutzereinstellungen und generieren Sie ein neues Zugriffs -Token. Wird generiert

Apache ist der Held hinter dem Internet. Es ist nicht nur ein Webserver, sondern auch eine leistungsstarke Plattform, die enormen Datenverkehr unterstützt und dynamische Inhalte bietet. Es bietet eine extrem hohe Flexibilität durch ein modulares Design und ermöglicht die Ausdehnung verschiedener Funktionen nach Bedarf. Modularität stellt jedoch auch Konfigurations- und Leistungsherausforderungen vor, die ein sorgfältiges Management erfordern. Apache eignet sich für Serverszenarien, die hoch anpassbare und entsprechende komplexe Anforderungen erfordern.
