Heim Backend-Entwicklung Python-Tutorial Naive Bayes-Beispiele in Python

Naive Bayes-Beispiele in Python

Jun 09, 2023 pm 11:36 PM
python编程 朴素贝叶斯 实例演示

Python ist eine einfache und leicht zu erlernende Programmiersprache mit umfangreichen wissenschaftlichen Computerbibliotheken und Datenverarbeitungstools. Unter ihnen ist der Naive-Bayes-Algorithmus als klassische Methode des maschinellen Lernens auch in der Python-Sprache weit verbreitet. In diesem Artikel werden Beispiele verwendet, um die Verwendung und Schritte von Naive Bayes in Python vorzustellen.

  1. Einführung in Naive Bayes

Der Naive Bayes-Algorithmus ist ein Klassifizierungsalgorithmus, der auf dem Bayes-Theorem basiert. Seine Kernidee besteht darin, die Klassifizierungsergebnisse neuer Daten anhand der Eigenschaften des bekannten Trainingsdatensatzes abzuleiten. In praktischen Anwendungen wird der Naive-Bayes-Algorithmus häufig in Szenarien wie Textklassifizierung, Spam-Filterung und Stimmungsanalyse verwendet.

Das Merkmal des Naive-Bayes-Algorithmus ist, dass er davon ausgeht, dass jedes Merkmal unabhängig voneinander ist. Diese Annahme trifft in tatsächlichen Situationen oft nicht zu, daher wird der Naive-Bayes-Algorithmus als „naiv“ bezeichnet. Trotz dieser Annahme schneidet Naive Bayes bei Problemen wie der Kurztextklassifizierung immer noch gut ab.

  1. Verwendung des Naive-Bayes-Klassifikators

In Python können die Schritte zur Verwendung des Naive-Bayes-Klassifikators wie folgt zusammengefasst werden:

2.1 Daten vorbereiten

Zuerst müssen Sie die Trainingsdaten vorbereiten und die zu klassifizierenden Daten testen. Diese Daten können in Form von Text, Bildern, Audio usw. vorliegen, müssen jedoch in eine für den Computer verständliche Form umgewandelt werden. Bei Textklassifizierungsproblemen ist es häufig erforderlich, Text in eine Vektordarstellung umzuwandeln.

2.2 Trainingsmodell

Als nächstes müssen Sie den Trainingsdatensatz verwenden, um den Naive Bayes-Klassifikator zu erstellen. In Python gibt es drei häufig verwendete naive Bayes-Klassifikatoren:

  • GaussianNB: geeignet für die Klassifizierung kontinuierlicher Daten.
  • BernoulliNB: Geeignet zur Klassifizierung binärer Daten.
  • MultinomialNB: Geeignet für die Klassifizierung multivariater Daten.

Am Beispiel der Textklassifizierung können Sie die von der sklearn-Bibliothek bereitgestellte TfidfVectorizer-Klasse verwenden, um den Text in eine Vektordarstellung umzuwandeln, und den MultinomialNB-Klassifikator für das Training verwenden.

2.3 Testen des Modells

Nach Abschluss des Trainings muss der Testdatensatz verwendet werden, um die Leistung des Modells zu bewerten. Normalerweise sind der Testdatensatz und der Trainingsdatensatz unabhängig. Es ist zu beachten, dass Daten aus dem Trainingsdatensatz während des Tests nicht verwendet werden können. Sie können die von der Sklearn-Bibliothek bereitgestellte Funktion precision_score verwenden, um die Genauigkeit des Modells zu berechnen.

  1. Beispiel: Textklassifizierung basierend auf Naive Bayes

Um die praktische Anwendung des Naive Bayes-Klassifikators zu demonstrieren, wird in diesem Artikel eine Textklassifizierung basierend auf Naive Bayes als Beispiel herangezogen.

3.1 Daten vorbereiten

Suchen Sie zunächst zwei Textdatensätze aus dem Internet, nämlich „Sportnachrichten“ und „Technologienachrichten“. Jeder Datensatz enthält 1000 Texte. Legen Sie die beiden Datensätze in verschiedene Ordner und kennzeichnen Sie die Texte als „Sport“ bzw. „Technologie“.

3.2 Verwenden Sie die Sklearn-Bibliothek zur Klassifizierung.

Als nächstes verwenden Sie zur Klassifizierung den von der Sklearn-Bibliothek bereitgestellten naiven Bayes-Klassifikator.

(1) Verwandte Bibliotheken importieren

from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.metrics import accuracy_score
import os
Nach dem Login kopieren

(2) Textdaten und ihre Anmerkungen lesen

def read_files(path):
    text_list = []
    label_list = []
    for root, dirs, files in os.walk(path):
        for file in files:
            file_path = os.path.join(root, file)
            with open(file_path, 'r', encoding='utf-8') as f:
                text = ''.join(f.readlines())
                text_list.append(text)
                if '体育' in file_path:
                    label_list.append('体育')
                elif '科技' in file_path:
                    label_list.append('科技')
    return text_list, label_list
Nach dem Login kopieren

(3) Text in Vektordarstellung konvertieren

def text_vectorizer(text_list):
    vectorizer = TfidfVectorizer()
    X = vectorizer.fit_transform(text_list)
    return X, vectorizer
Nach dem Login kopieren

(4) Modell trainieren und Genauigkeit zurückgeben

def train(text_list, label_list):
    X, vectorizer = text_vectorizer(text_list)
    y = label_list
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
    clf = MultinomialNB()
    clf.fit(X_train, y_train)
    y_pred = clf.predict(X_test)
    acc = accuracy_score(y_test, y_pred)
    return clf, vectorizer, acc
Nach dem Login kopieren

(5) Testen Modell

def predict(clf, vectorizer, text):
    X = vectorizer.transform(text)
    y_pred = clf.predict(X)
    return y_pred[0]
Nach dem Login kopieren

3.3 Ergebnisanalyse

Durch Ausführen des obigen Codes können Sie eine Genauigkeit des Klassifikators von 0,955 erhalten. Bei der eigentlichen Klassifizierung müssen Sie lediglich den zu klassifizierenden Text in die Vorhersagefunktion eingeben, um die Kategorie zurückzugeben, zu der er gehört. Geben Sie beispielsweise den Text „iPhone 12 ist endlich erschienen!“ ein, um zur Kategorie „Technologie“ zurückzukehren.

  1. Zusammenfassung

Als einfacher und effektiver Klassifizierungsalgorithmus wird der Naive Bayes-Algorithmus auch häufig in Python verwendet. In diesem Artikel werden die Methoden und Schritte zur Verwendung des Naive-Bayes-Klassifikators vorgestellt und die Textklassifizierung basierend auf Naive Bayes als Beispiel verwendet, um die praktische Anwendung des Klassifikators zu demonstrieren. Im eigentlichen Anwendungsprozess sind auch Datenvorverarbeitung, Merkmalsauswahl und andere Vorgänge erforderlich, um die Genauigkeit des Klassifikators zu verbessern.

Das obige ist der detaillierte Inhalt vonNaive Bayes-Beispiele in Python. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

R.E.P.O. Energiekristalle erklärten und was sie tun (gelber Kristall)
2 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
Repo: Wie man Teamkollegen wiederbelebt
1 Monate vor By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Abenteuer: Wie man riesige Samen bekommt
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

AssertionError: Wie behebe ich Python-Assertionsfehler? AssertionError: Wie behebe ich Python-Assertionsfehler? Jun 25, 2023 pm 11:07 PM

Behauptungen in Python sind ein nützliches Werkzeug für Programmierer zum Debuggen ihres Codes. Es wird verwendet, um zu überprüfen, ob der interne Status des Programms den Erwartungen entspricht, und um einen Assertionsfehler (AssertionError) auszulösen, wenn diese Bedingungen falsch sind. Während des Entwicklungsprozesses werden beim Testen und Debuggen Assertionen verwendet, um zu überprüfen, ob der Status des Codes mit den erwarteten Ergebnissen übereinstimmt. In diesem Artikel werden die Ursachen, Lösungen und die korrekte Verwendung von Zusicherungen in Ihrem Code erläutert. Ursache des Assertion-Fehlers. Assertion-Fehler bestanden

So entwickeln Sie einen Schwachstellenscanner in Python So entwickeln Sie einen Schwachstellenscanner in Python Jul 01, 2023 am 08:10 AM

Überblick über die Entwicklung eines Schwachstellenscanners mit Python In der heutigen Umgebung zunehmender Sicherheitsbedrohungen im Internet sind Schwachstellenscanner zu einem wichtigen Werkzeug zum Schutz der Netzwerksicherheit geworden. Python ist eine beliebte Programmiersprache, die prägnant, leicht lesbar und leistungsstark ist und sich für die Entwicklung verschiedener praktischer Tools eignet. In diesem Artikel erfahren Sie, wie Sie mit Python einen Schwachstellenscanner entwickeln, der Ihr Netzwerk in Echtzeit schützt. Schritt 1: Scanziele festlegen Bevor Sie einen Schwachstellenscanner entwickeln, müssen Sie festlegen, welche Ziele Sie scannen möchten. Dies kann Ihr eigenes Netzwerk sein oder alles, was Sie testen dürfen

Stratifizierte Stichprobentechniken in Python Stratifizierte Stichprobentechniken in Python Jun 10, 2023 pm 10:40 PM

Die geschichtete Stichprobentechnik in Python ist eine häufig verwendete Datenerfassungsmethode in der Statistik. Sie kann einen Teil der Stichproben aus dem Datensatz zur Analyse auswählen, um auf die Eigenschaften des gesamten Datensatzes zu schließen. Im Zeitalter von Big Data sind die Datenmengen riesig und die Verwendung der gesamten Stichprobe für die Analyse ist sowohl zeitaufwändig als auch wirtschaftlich unpraktisch. Daher kann die Wahl einer geeigneten Stichprobenmethode die Effizienz der Datenanalyse verbessern. In diesem Artikel werden hauptsächlich geschichtete Stichprobentechniken in Python vorgestellt. Was ist eine geschichtete Stichprobe? Bei der Probenahme handelt es sich um eine geschichtete Probenahme

So verwenden Sie Python für die Skripterstellung und Ausführung unter Linux So verwenden Sie Python für die Skripterstellung und Ausführung unter Linux Oct 05, 2023 am 11:45 AM

So verwenden Sie Python zum Schreiben und Ausführen von Skripten unter Linux. Im Linux-Betriebssystem können wir Python zum Schreiben und Ausführen verschiedener Skripte verwenden. Python ist eine prägnante und leistungsstarke Programmiersprache, die eine Fülle von Bibliotheken und Tools bereitstellt, um die Skripterstellung einfacher und effizienter zu machen. Im Folgenden stellen wir die grundlegenden Schritte zur Verwendung von Python zum Schreiben und Ausführen von Skripten unter Linux vor und stellen einige spezifische Codebeispiele bereit, die Ihnen helfen, es besser zu verstehen und zu verwenden. Installieren Sie Python

Verwendung der Funktion sqrt() in Python Verwendung der Funktion sqrt() in Python Feb 21, 2024 pm 03:09 PM

Verwendung und Codebeispiele der Funktion sqrt() in Python 1. Funktion und Einführung der Funktion sqrt() In der Python-Programmierung ist die Funktion sqrt() eine Funktion im Mathematikmodul und ihre Funktion besteht darin, die Quadratwurzel von zu berechnen eine Zahl. Die Quadratwurzel bedeutet, dass eine mit sich selbst multiplizierte Zahl dem Quadrat der Zahl entspricht, d. h. x*x=n, dann ist x die Quadratwurzel von n. Zur Berechnung der Quadratwurzel kann im Programm die Funktion sqrt() verwendet werden. 2. So verwenden Sie die Funktion sqrt() in Python, sq

Python-Programmierpraxis: Verwendung der Baidu Map API zum Generieren statischer Kartenfunktionen Python-Programmierpraxis: Verwendung der Baidu Map API zum Generieren statischer Kartenfunktionen Jul 30, 2023 pm 09:05 PM

Python-Programmierpraxis: Verwendung der Baidu Map API zum Generieren statischer Kartenfunktionen Einführung: In der modernen Gesellschaft sind Karten zu einem unverzichtbaren Bestandteil des Lebens der Menschen geworden. Bei der Arbeit mit Karten benötigen wir häufig eine statische Karte eines bestimmten Bereichs zur Anzeige auf einer Webseite, einer mobilen App oder einem Bericht. In diesem Artikel wird die Verwendung der Programmiersprache Python und der Baidu Map API zum Generieren statischer Karten vorgestellt und relevante Codebeispiele bereitgestellt. 1. Vorbereitungsarbeiten Um die Funktion der Generierung statischer Karten mithilfe der Baidu Map API zu realisieren, I

Bringen Sie Ihnen bei, wie Sie mithilfe der Python-Programmierung das Andocken der Baidu-Bilderkennungsschnittstelle und die Bilderkennungsfunktion realisieren. Bringen Sie Ihnen bei, wie Sie mithilfe der Python-Programmierung das Andocken der Baidu-Bilderkennungsschnittstelle und die Bilderkennungsfunktion realisieren. Aug 25, 2023 pm 03:10 PM

Bringen Sie Ihnen bei, die Python-Programmierung zu verwenden, um das Andocken der Bilderkennungsschnittstelle von Baidu zu implementieren und die Bilderkennungsfunktion zu realisieren. Im Bereich Computer Vision ist die Bilderkennungstechnologie eine sehr wichtige Technologie. Baidu bietet eine leistungsstarke Bilderkennungsschnittstelle, über die wir Bildklassifizierung, Beschriftung, Gesichtserkennung und andere Funktionen problemlos implementieren können. In diesem Artikel erfahren Sie, wie Sie mithilfe der Programmiersprache Python die Bilderkennungsfunktion realisieren, indem Sie eine Verbindung zur Baidu-Bilderkennungsschnittstelle herstellen. Zuerst müssen wir eine Anwendung auf der Baidu Developer Platform erstellen und herunterladen

So führen Sie Bildverarbeitung und -erkennung in Python durch So führen Sie Bildverarbeitung und -erkennung in Python durch Oct 20, 2023 pm 12:10 PM

So führen Sie Bildverarbeitung und -erkennung in Python durch Zusammenfassung: Moderne Technologie hat Bildverarbeitung und -erkennung in vielen Bereichen zu einem wichtigen Werkzeug gemacht. Python ist eine einfach zu erlernende und zu verwendende Programmiersprache mit umfangreichen Bildverarbeitungs- und Erkennungsbibliotheken. In diesem Artikel wird die Verwendung von Python für die Bildverarbeitung und -erkennung vorgestellt und spezifische Codebeispiele bereitgestellt. Bildverarbeitung: Bei der Bildverarbeitung werden verschiedene Vorgänge und Transformationen an Bildern durchgeführt, um die Bildqualität zu verbessern, Informationen aus Bildern zu extrahieren usw. PIL-Bibliothek in Python (Pi

See all articles