Detaillierte Erklärung des K-means++-Algorithmus in Python
Der
K-Means-Algorithmus ist ein gängiger unbeaufsichtigter Lernalgorithmus, der zum Gruppieren von Daten in verschiedene Kategorien verwendet wird. Der K-means++-Algorithmus ist eine verbesserte Version des K-means-Algorithmus mit dem Ziel, die Effizienz und Genauigkeit der anfänglichen Auswahl des Clusterzentrums zu verbessern. In diesem Artikel werden das Prinzip, die Code-Implementierung und die Anwendung des K-means++-Algorithmus in Python ausführlich vorgestellt.
- Überblick über den K-Means-Algorithmus
Der K-Means-Algorithmus ist ein iterativer Algorithmus. Der Prozess jeder Iteration ist: Wählen Sie zunächst zufällig K anfängliche Clusterzentren aus und weisen Sie dann jeden Datenpunkt dem nächstgelegenen In der Kategorie zu Nachdem das anfängliche Clusterzentrum gefunden wurde, werden die Zentren aller Cluster neu berechnet und die Clusterzentren aktualisiert. Wiederholen Sie den obigen Vorgang, bis die Konvergenzbedingungen erfüllt sind.
K-Means-Algorithmusprozess:
- Wählen Sie zufällig K Datenpunkte aus den Daten als anfängliches Clusterzentrum aus.
- Weisen Sie Datenpunkte dem Cluster mit dem nächstgelegenen Clusterzentrum zu.
- Berechnen Sie die Mitte jedes Clusters neu.
- Wiederholen Sie 2-3, bis die Konvergenzbedingungen erfüllt sind (das Clusterzentrum ändert sich nicht mehr, die maximale Anzahl von Iterationen ist erreicht usw.).
- K-means++-Algorithmusschritte
Der K-means++-Algorithmus ist eine verbesserte Version des K-means-Algorithmus, der hauptsächlich die Auswahl der anfänglichen Clusterzentren optimiert. Die ersten Schritte zur Auswahl des Clusterzentrums des K-means++-Algorithmus lauten wie folgt:
- Wählen Sie zufällig einen Datenpunkt als erstes Clusterzentrum aus.
- Berechnen Sie für jeden Datenpunkt seinen Abstand D(x) vom nächstgelegenen Clusterzentrum.
- Wählen Sie zufällig einen Datenpunkt als nächsten Cluster-Zentrum aus. Stellen Sie sicher, dass die Wahrscheinlichkeit, dass er ausgewählt wird, umso größer ist:
a Clusterzentrum Der nächste Abstand zum Zentrum beträgt D(x)^2.
b. Berechnen Sie die Summe Sum(D(x)^2) aller D(x)^2.
c. Gewichten Sie jeden Datenpunkt entsprechend dem Verhältnis seiner nächsten Entfernung zum vorhandenen Clusterzentrum, und die Wahrscheinlichkeit ist D(x)^2/Summe(D(x)^2).
d. Wählen Sie aus der Stichprobe gemäß der oben genannten Wahrscheinlichkeit einen Datenpunkt als nächstes Clusterzentrum aus. - Wiederholen Sie Schritt 3, bis K-Clusterzentren ausgewählt sind.
- Python implementiert den K-means++-Algorithmus
Im Folgenden implementieren wir den K-means++-Algorithmus über Python.
Importieren Sie zunächst die erforderlichen Bibliotheken:
import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import make_blobs from sklearn.cluster import KMeans
Als nächstes generieren wir einen Datensatz für das Clustering:
n_samples = 1500 random_state = 170 X, y = make_blobs(n_samples=n_samples, random_state=random_state)
Dann trainieren wir das K-means++-Modell durch das KMeans-Modul von sklearn:
kmeans = KMeans(init="k-means++", n_clusters=3, n_init=10) kmeans.fit(X)
Abschließend werden wir das Clustering visualisieren Ergebnisse:
plt.figure(figsize=(12, 12)) h = 0.02 x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) Z = kmeans.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) plt.imshow(Z, interpolation="nearest", extent=(xx.min(), xx.max(), yy.min(), yy.max()), cmap=plt.cm.Pastel1, aspect="auto", origin="lower") plt.scatter(X[:, 0], X[:, 1], s=30, c=kmeans.labels_, cmap=plt.cm.Paired) plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], marker="^", s=100, linewidths=3, color='black', zorder=10) plt.title("K-means++ clustering") plt.xlim(x_min, x_max) plt.ylim(y_min, y_max) plt.show()
- K-means++-Algorithmus-Anwendungsszenarien
Der K-means-Algorithmus eignet sich für Datenclusterprobleme ohne Etiketteninformationen. Im Vergleich zum K-Means-Algorithmus eignet sich der K-Means++-Algorithmus besser für Situationen, in denen viele Daten vorhanden sind oder die Datenverteilung relativ verstreut ist, um die Rationalität und Einzigartigkeit des anfänglichen Clustering-Zentrums sicherzustellen. Der
K-means++-Algorithmus kann in den Bereichen Data Mining, Bildverarbeitung, Verarbeitung natürlicher Sprache und anderen Bereichen verwendet werden. Clustering-Algorithmen können verwendet werden, um Proben mit höherer Ähnlichkeit zu finden, was auch für die Visualisierung großer Datenmengen sehr nützlich ist.
Kurz gesagt, der K-means++-Algorithmus hat gute Anwendungsaussichten in den Bereichen Data Mining, Clusteranalyse, Bilderkennung, Verarbeitung natürlicher Sprache und anderen Bereichen.
Das obige ist der detaillierte Inhalt vonDetaillierte Erklärung des K-means++-Algorithmus in Python. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



MySQL hat eine kostenlose Community -Version und eine kostenpflichtige Enterprise -Version. Die Community -Version kann kostenlos verwendet und geändert werden, die Unterstützung ist jedoch begrenzt und für Anwendungen mit geringen Stabilitätsanforderungen und starken technischen Funktionen geeignet. Die Enterprise Edition bietet umfassende kommerzielle Unterstützung für Anwendungen, die eine stabile, zuverlässige Hochleistungsdatenbank erfordern und bereit sind, Unterstützung zu bezahlen. Zu den Faktoren, die bei der Auswahl einer Version berücksichtigt werden, gehören Kritikalität, Budgetierung und technische Fähigkeiten von Anwendungen. Es gibt keine perfekte Option, nur die am besten geeignete Option, und Sie müssen die spezifische Situation sorgfältig auswählen.

Der Artikel führt den Betrieb der MySQL -Datenbank vor. Zunächst müssen Sie einen MySQL -Client wie MySQLworkBench oder Befehlszeilen -Client installieren. 1. Verwenden Sie den Befehl mySQL-uroot-P, um eine Verbindung zum Server herzustellen und sich mit dem Stammkonto-Passwort anzumelden. 2. Verwenden Sie die Erstellung von Createdatabase, um eine Datenbank zu erstellen, und verwenden Sie eine Datenbank aus. 3.. Verwenden Sie CreateTable, um eine Tabelle zu erstellen, Felder und Datentypen zu definieren. 4. Verwenden Sie InsertInto, um Daten einzulegen, Daten abzufragen, Daten nach Aktualisierung zu aktualisieren und Daten nach Löschen zu löschen. Nur indem Sie diese Schritte beherrschen, lernen, mit gemeinsamen Problemen umzugehen und die Datenbankleistung zu optimieren, können Sie MySQL effizient verwenden.

MySQL kann ohne Netzwerkverbindungen für die grundlegende Datenspeicherung und -verwaltung ausgeführt werden. Für die Interaktion mit anderen Systemen, Remotezugriff oder Verwendung erweiterte Funktionen wie Replikation und Clustering ist jedoch eine Netzwerkverbindung erforderlich. Darüber hinaus sind Sicherheitsmaßnahmen (wie Firewalls), Leistungsoptimierung (Wählen Sie die richtige Netzwerkverbindung) und die Datensicherung für die Verbindung zum Internet von entscheidender Bedeutung.

Die MySQL-Datenbankleistung Optimierungshandbuch In ressourcenintensiven Anwendungen spielt die MySQL-Datenbank eine entscheidende Rolle und ist für die Verwaltung massiver Transaktionen verantwortlich. Mit der Erweiterung der Anwendung werden jedoch die Datenbankleistung Engpässe häufig zu einer Einschränkung. In diesem Artikel werden eine Reihe effektiver Strategien zur Leistungsoptimierung von MySQL -Leistung untersucht, um sicherzustellen, dass Ihre Anwendung unter hohen Lasten effizient und reaktionsschnell bleibt. Wir werden tatsächliche Fälle kombinieren, um eingehende Schlüsseltechnologien wie Indexierung, Abfrageoptimierung, Datenbankdesign und Caching zu erklären. 1. Das Design der Datenbankarchitektur und die optimierte Datenbankarchitektur sind der Eckpfeiler der MySQL -Leistungsoptimierung. Hier sind einige Kernprinzipien: Die Auswahl des richtigen Datentyps und die Auswahl des kleinsten Datentyps, der den Anforderungen entspricht, kann nicht nur Speicherplatz speichern, sondern auch die Datenverarbeitungsgeschwindigkeit verbessern.

Hadidb: Eine leichte, hochrangige skalierbare Python-Datenbank Hadidb (HadIDB) ist eine leichte Datenbank in Python mit einem hohen Maß an Skalierbarkeit. Installieren Sie HadIDB mithilfe der PIP -Installation: PipinstallHadIDB -Benutzerverwaltung erstellen Benutzer: createUser (), um einen neuen Benutzer zu erstellen. Die Authentication () -Methode authentifiziert die Identität des Benutzers. fromHadidb.operationImportUseruser_obj = user ("admin", "admin") user_obj.

Es ist unmöglich, das MongoDB -Passwort direkt über Navicat anzuzeigen, da es als Hash -Werte gespeichert ist. So rufen Sie verlorene Passwörter ab: 1. Passwörter zurücksetzen; 2. Überprüfen Sie die Konfigurationsdateien (können Hash -Werte enthalten). 3. Überprüfen Sie Codes (May Hardcode -Passwörter).

MySQL Workbench kann eine Verbindung zu MariADB herstellen, vorausgesetzt, die Konfiguration ist korrekt. Wählen Sie zuerst "Mariadb" als Anschlusstyp. Stellen Sie in der Verbindungskonfiguration Host, Port, Benutzer, Kennwort und Datenbank korrekt ein. Überprüfen Sie beim Testen der Verbindung, ob der Mariadb -Dienst gestartet wird, ob der Benutzername und das Passwort korrekt sind, ob die Portnummer korrekt ist, ob die Firewall Verbindungen zulässt und ob die Datenbank vorhanden ist. Verwenden Sie in fortschrittlicher Verwendung die Verbindungspooling -Technologie, um die Leistung zu optimieren. Zu den häufigen Fehlern gehören unzureichende Berechtigungen, Probleme mit Netzwerkverbindung usw. Bei Debugging -Fehlern, sorgfältige Analyse von Fehlerinformationen und verwenden Sie Debugging -Tools. Optimierung der Netzwerkkonfiguration kann die Leistung verbessern

Für Produktionsumgebungen ist in der Regel ein Server erforderlich, um MySQL auszuführen, aus Gründen, einschließlich Leistung, Zuverlässigkeit, Sicherheit und Skalierbarkeit. Server haben normalerweise leistungsstärkere Hardware, redundante Konfigurationen und strengere Sicherheitsmaßnahmen. Bei kleinen Anwendungen mit niedriger Last kann MySQL auf lokalen Maschinen ausgeführt werden, aber Ressourcenverbrauch, Sicherheitsrisiken und Wartungskosten müssen sorgfältig berücksichtigt werden. Für eine größere Zuverlässigkeit und Sicherheit sollte MySQL auf Cloud oder anderen Servern bereitgestellt werden. Die Auswahl der entsprechenden Serverkonfiguration erfordert eine Bewertung basierend auf Anwendungslast und Datenvolumen.
