Beispiel für die Datenvisualisierung in Python: Heatmap
Mit Beginn des Datenzeitalters ist die Datenvisualisierung zunehmend zu einem unverzichtbaren Bestandteil der Datenanalyse geworden. In Python gibt es umfangreiche Visualisierungstool-Bibliotheken wie Matplotlib, Seaborn usw. Dieser Artikel stellt hauptsächlich eine der Methoden zum Implementieren von Heatmaps vor und hofft, den Lesern bei der Python-Datenvisualisierung hilfreich zu sein.
1. Einführung in Heatmaps
Heatmaps, auch Dichtekarten genannt, nutzen die Farbtiefe, um die Datendichte darzustellen. Bei der Datenvisualisierung bieten Heatmaps eine intuitivere Darstellungsmethode und können die räumliche Verteilung von Daten klar ausdrücken.
2. Implementierung der Heatmap
In Python können wir die Heatmap-Funktion in der Seaborn-Bibliothek verwenden, um Heatmaps zu zeichnen.
Die spezifischen Schritte sind wie folgt:
- Importieren Sie die erforderlichen Bibliotheken:
numpy als np importieren
seaborn als sns importieren
matplotlib.pyplot als plt importieren
- Bereiten Sie die Daten vor:
Zur Zweckmäßigkeit der Demonstration: Wir verwenden einen Zufallsgenerator. Die Matrix wird als Beispieldaten verwendet:
data = np.random.rand(10, 10)
- Zeichnen Sie die Heatmap:
Verwenden Sie die Funktion sns.heatmap, um die Heatmap zu zeichnen :
sns.heatmap(data, cmap ='coolwarm')
Darin gibt der cmap-Parameter die Farbeinstellungen der Heatmap an. Hier verwenden wir das kühlwarme Farbschema.
Nachdem Sie den obigen Code ausgeführt haben, können Sie eine einfache Heatmap erhalten.
3. Vollständiger Code
Das Folgende ist ein vollständiger Beispielcode, der zeigt, wie eine vollständigere Heatmap implementiert wird. Einschließlich Zeichnungskoordinatenachsen, Beschriftungen usw.:
numpy als np importieren
seaborn als sns importieren
matplotlib.pyplot als plt importieren
Daten vorbereiten
data = np.random.rand(10, 10) * 10
Wärmefigur darstellen
heatmap = sns.heatmap(data, cmap='coolwarm')
Legen Sie den Achsennamen fest
heatmap.set_xlabel('X-label')
heatmap.set_ylabel('Y-label')
Legen Sie den Wärmebildtitel fest
heatmap.set_title('Heatmap')
Beschriftung hinzufügen
für i in range(len(data)):
for j in range(len(data[0])): plt.text(j + 0.5, i + 0.5, round(data[i][j], 2), ha="center", va="center", color="white")
Bild anzeigen
plt.show()
Führen Sie den obigen Code aus können wir eine Heatmap mit einem Rahmen, Achsennamen und Teilstrichbeschriftungen erhalten.
4. Zusammenfassung
Die Seaborn-Bibliothek in Python bietet eine schnelle Methode zum Zeichnen von Heatmaps, und mit entsprechenden Einstellungen können exquisite Effekte erzielt werden. Durch die Einführung dieses Artikels können Leser die Verwendung von Python-Visualisierungstools zur Anzeige ihrer eigenen Daten besser beherrschen.
Das obige ist der detaillierte Inhalt vonBeispiel für die Datenvisualisierung in Python: Heatmap. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen

PHP ist hauptsächlich prozedurale Programmierung, unterstützt aber auch die objektorientierte Programmierung (OOP). Python unterstützt eine Vielzahl von Paradigmen, einschließlich OOP, funktionaler und prozeduraler Programmierung. PHP ist für die Webentwicklung geeignet, und Python eignet sich für eine Vielzahl von Anwendungen wie Datenanalyse und maschinelles Lernen.

PHP eignet sich für Webentwicklung und schnelles Prototyping, und Python eignet sich für Datenwissenschaft und maschinelles Lernen. 1.PHP wird für die dynamische Webentwicklung verwendet, mit einfacher Syntax und für schnelle Entwicklung geeignet. 2. Python hat eine kurze Syntax, ist für mehrere Felder geeignet und ein starkes Bibliotheksökosystem.

Python eignet sich besser für Anfänger mit einer reibungslosen Lernkurve und einer kurzen Syntax. JavaScript ist für die Front-End-Entwicklung mit einer steilen Lernkurve und einer flexiblen Syntax geeignet. 1. Python-Syntax ist intuitiv und für die Entwicklung von Datenwissenschaften und Back-End-Entwicklung geeignet. 2. JavaScript ist flexibel und in Front-End- und serverseitiger Programmierung weit verbreitet.

Im VS -Code können Sie das Programm im Terminal in den folgenden Schritten ausführen: Erstellen Sie den Code und öffnen Sie das integrierte Terminal, um sicherzustellen, dass das Codeverzeichnis mit dem Terminal Working -Verzeichnis übereinstimmt. Wählen Sie den Befehl aus, den Befehl ausführen, gemäß der Programmiersprache (z. B. Pythons Python your_file_name.py), um zu überprüfen, ob er erfolgreich ausgeführt wird, und Fehler auflösen. Verwenden Sie den Debugger, um die Debugging -Effizienz zu verbessern.

VS -Code kann unter Windows 8 ausgeführt werden, aber die Erfahrung ist möglicherweise nicht großartig. Stellen Sie zunächst sicher, dass das System auf den neuesten Patch aktualisiert wurde, und laden Sie dann das VS -Code -Installationspaket herunter, das der Systemarchitektur entspricht und sie wie aufgefordert installiert. Beachten Sie nach der Installation, dass einige Erweiterungen möglicherweise mit Windows 8 nicht kompatibel sind und nach alternativen Erweiterungen suchen oder neuere Windows -Systeme in einer virtuellen Maschine verwenden müssen. Installieren Sie die erforderlichen Erweiterungen, um zu überprüfen, ob sie ordnungsgemäß funktionieren. Obwohl VS -Code unter Windows 8 möglich ist, wird empfohlen, auf ein neueres Windows -System zu upgraden, um eine bessere Entwicklungserfahrung und Sicherheit zu erzielen.

VS -Code -Erweiterungen stellen böswillige Risiken dar, wie das Verstecken von böswilligem Code, das Ausbeutetieren von Schwachstellen und das Masturbieren als legitime Erweiterungen. Zu den Methoden zur Identifizierung böswilliger Erweiterungen gehören: Überprüfung von Verlegern, Lesen von Kommentaren, Überprüfung von Code und Installation mit Vorsicht. Zu den Sicherheitsmaßnahmen gehören auch: Sicherheitsbewusstsein, gute Gewohnheiten, regelmäßige Updates und Antivirensoftware.

VS -Code kann zum Schreiben von Python verwendet werden und bietet viele Funktionen, die es zu einem idealen Werkzeug für die Entwicklung von Python -Anwendungen machen. Sie ermöglichen es Benutzern: Installation von Python -Erweiterungen, um Funktionen wie Code -Abschluss, Syntax -Hervorhebung und Debugging zu erhalten. Verwenden Sie den Debugger, um Code Schritt für Schritt zu verfolgen, Fehler zu finden und zu beheben. Integrieren Sie Git für die Versionskontrolle. Verwenden Sie Tools für die Codeformatierung, um die Codekonsistenz aufrechtzuerhalten. Verwenden Sie das Lining -Tool, um potenzielle Probleme im Voraus zu erkennen.

PHP entstand 1994 und wurde von Rasmuslerdorf entwickelt. Es wurde ursprünglich verwendet, um Website-Besucher zu verfolgen und sich nach und nach zu einer serverseitigen Skriptsprache entwickelt und in der Webentwicklung häufig verwendet. Python wurde Ende der 1980er Jahre von Guidovan Rossum entwickelt und erstmals 1991 veröffentlicht. Es betont die Lesbarkeit und Einfachheit der Code und ist für wissenschaftliche Computer, Datenanalysen und andere Bereiche geeignet.
