Inhaltsverzeichnis
Daten vorbereiten
Wärmefigur darstellen
Legen Sie den Achsennamen fest
Legen Sie den Wärmebildtitel fest
Beschriftung hinzufügen
Bild anzeigen
Heim Backend-Entwicklung Python-Tutorial Beispiel für die Datenvisualisierung in Python: Heatmap

Beispiel für die Datenvisualisierung in Python: Heatmap

Jun 11, 2023 pm 07:30 PM
python 数据可视化 热力图

Mit Beginn des Datenzeitalters ist die Datenvisualisierung zunehmend zu einem unverzichtbaren Bestandteil der Datenanalyse geworden. In Python gibt es umfangreiche Visualisierungstool-Bibliotheken wie Matplotlib, Seaborn usw. Dieser Artikel stellt hauptsächlich eine der Methoden zum Implementieren von Heatmaps vor und hofft, den Lesern bei der Python-Datenvisualisierung hilfreich zu sein.

1. Einführung in Heatmaps
Heatmaps, auch Dichtekarten genannt, nutzen die Farbtiefe, um die Datendichte darzustellen. Bei der Datenvisualisierung bieten Heatmaps eine intuitivere Darstellungsmethode und können die räumliche Verteilung von Daten klar ausdrücken.

2. Implementierung der Heatmap
In Python können wir die Heatmap-Funktion in der Seaborn-Bibliothek verwenden, um Heatmaps zu zeichnen.

Die spezifischen Schritte sind wie folgt:

  1. Importieren Sie die erforderlichen Bibliotheken:

numpy als np importieren
seaborn als sns importieren
matplotlib.pyplot als plt importieren

  1. Bereiten Sie die Daten vor:
    Zur Zweckmäßigkeit der Demonstration: Wir verwenden einen Zufallsgenerator. Die Matrix wird als Beispieldaten verwendet:

data = np.random.rand(10, 10)

  1. Zeichnen Sie die Heatmap:
    Verwenden Sie die Funktion sns.heatmap, um die Heatmap zu zeichnen :

sns.heatmap(data, cmap ='coolwarm')

Darin gibt der cmap-Parameter die Farbeinstellungen der Heatmap an. Hier verwenden wir das kühlwarme Farbschema.

Nachdem Sie den obigen Code ausgeführt haben, können Sie eine einfache Heatmap erhalten.

3. Vollständiger Code
Das Folgende ist ein vollständiger Beispielcode, der zeigt, wie eine vollständigere Heatmap implementiert wird. Einschließlich Zeichnungskoordinatenachsen, Beschriftungen usw.:

numpy als np importieren
seaborn als sns importieren
matplotlib.pyplot als plt importieren

Daten vorbereiten

data = np.random.rand(10, 10) * 10

Wärmefigur darstellen

heatmap = sns.heatmap(data, cmap='coolwarm')

Legen Sie den Achsennamen fest

heatmap.set_xlabel('X-label')
heatmap.set_ylabel('Y-label')

Legen Sie den Wärmebildtitel fest

heatmap.set_title('Heatmap')

Beschriftung hinzufügen

für i in range(len(data)):

for j in range(len(data[0])):
    plt.text(j + 0.5, i + 0.5, round(data[i][j], 2),
             ha="center", va="center", color="white")
Nach dem Login kopieren

Bild anzeigen

plt.show()

Führen Sie den obigen Code aus können wir eine Heatmap mit einem Rahmen, Achsennamen und Teilstrichbeschriftungen erhalten.

4. Zusammenfassung
Die Seaborn-Bibliothek in Python bietet eine schnelle Methode zum Zeichnen von Heatmaps, und mit entsprechenden Einstellungen können exquisite Effekte erzielt werden. Durch die Einführung dieses Artikels können Leser die Verwendung von Python-Visualisierungstools zur Anzeige ihrer eigenen Daten besser beherrschen.

Das obige ist der detaillierte Inhalt vonBeispiel für die Datenvisualisierung in Python: Heatmap. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

Video Face Swap

Video Face Swap

Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

PHP und Python: Verschiedene Paradigmen erklärt PHP und Python: Verschiedene Paradigmen erklärt Apr 18, 2025 am 12:26 AM

PHP ist hauptsächlich prozedurale Programmierung, unterstützt aber auch die objektorientierte Programmierung (OOP). Python unterstützt eine Vielzahl von Paradigmen, einschließlich OOP, funktionaler und prozeduraler Programmierung. PHP ist für die Webentwicklung geeignet, und Python eignet sich für eine Vielzahl von Anwendungen wie Datenanalyse und maschinelles Lernen.

Wählen Sie zwischen PHP und Python: Ein Leitfaden Wählen Sie zwischen PHP und Python: Ein Leitfaden Apr 18, 2025 am 12:24 AM

PHP eignet sich für Webentwicklung und schnelles Prototyping, und Python eignet sich für Datenwissenschaft und maschinelles Lernen. 1.PHP wird für die dynamische Webentwicklung verwendet, mit einfacher Syntax und für schnelle Entwicklung geeignet. 2. Python hat eine kurze Syntax, ist für mehrere Felder geeignet und ein starkes Bibliotheksökosystem.

Python vs. JavaScript: Die Lernkurve und Benutzerfreundlichkeit Python vs. JavaScript: Die Lernkurve und Benutzerfreundlichkeit Apr 16, 2025 am 12:12 AM

Python eignet sich besser für Anfänger mit einer reibungslosen Lernkurve und einer kurzen Syntax. JavaScript ist für die Front-End-Entwicklung mit einer steilen Lernkurve und einer flexiblen Syntax geeignet. 1. Python-Syntax ist intuitiv und für die Entwicklung von Datenwissenschaften und Back-End-Entwicklung geeignet. 2. JavaScript ist flexibel und in Front-End- und serverseitiger Programmierung weit verbreitet.

So führen Sie Programme in der terminalen VSCODE aus So führen Sie Programme in der terminalen VSCODE aus Apr 15, 2025 pm 06:42 PM

Im VS -Code können Sie das Programm im Terminal in den folgenden Schritten ausführen: Erstellen Sie den Code und öffnen Sie das integrierte Terminal, um sicherzustellen, dass das Codeverzeichnis mit dem Terminal Working -Verzeichnis übereinstimmt. Wählen Sie den Befehl aus, den Befehl ausführen, gemäß der Programmiersprache (z. B. Pythons Python your_file_name.py), um zu überprüfen, ob er erfolgreich ausgeführt wird, und Fehler auflösen. Verwenden Sie den Debugger, um die Debugging -Effizienz zu verbessern.

Kann gegen Code in Windows 8 ausgeführt werden Kann gegen Code in Windows 8 ausgeführt werden Apr 15, 2025 pm 07:24 PM

VS -Code kann unter Windows 8 ausgeführt werden, aber die Erfahrung ist möglicherweise nicht großartig. Stellen Sie zunächst sicher, dass das System auf den neuesten Patch aktualisiert wurde, und laden Sie dann das VS -Code -Installationspaket herunter, das der Systemarchitektur entspricht und sie wie aufgefordert installiert. Beachten Sie nach der Installation, dass einige Erweiterungen möglicherweise mit Windows 8 nicht kompatibel sind und nach alternativen Erweiterungen suchen oder neuere Windows -Systeme in einer virtuellen Maschine verwenden müssen. Installieren Sie die erforderlichen Erweiterungen, um zu überprüfen, ob sie ordnungsgemäß funktionieren. Obwohl VS -Code unter Windows 8 möglich ist, wird empfohlen, auf ein neueres Windows -System zu upgraden, um eine bessere Entwicklungserfahrung und Sicherheit zu erzielen.

Ist die VSCODE -Erweiterung bösartig? Ist die VSCODE -Erweiterung bösartig? Apr 15, 2025 pm 07:57 PM

VS -Code -Erweiterungen stellen böswillige Risiken dar, wie das Verstecken von böswilligem Code, das Ausbeutetieren von Schwachstellen und das Masturbieren als legitime Erweiterungen. Zu den Methoden zur Identifizierung böswilliger Erweiterungen gehören: Überprüfung von Verlegern, Lesen von Kommentaren, Überprüfung von Code und Installation mit Vorsicht. Zu den Sicherheitsmaßnahmen gehören auch: Sicherheitsbewusstsein, gute Gewohnheiten, regelmäßige Updates und Antivirensoftware.

Kann Visual Studio -Code in Python verwendet werden Kann Visual Studio -Code in Python verwendet werden Apr 15, 2025 pm 08:18 PM

VS -Code kann zum Schreiben von Python verwendet werden und bietet viele Funktionen, die es zu einem idealen Werkzeug für die Entwicklung von Python -Anwendungen machen. Sie ermöglichen es Benutzern: Installation von Python -Erweiterungen, um Funktionen wie Code -Abschluss, Syntax -Hervorhebung und Debugging zu erhalten. Verwenden Sie den Debugger, um Code Schritt für Schritt zu verfolgen, Fehler zu finden und zu beheben. Integrieren Sie Git für die Versionskontrolle. Verwenden Sie Tools für die Codeformatierung, um die Codekonsistenz aufrechtzuerhalten. Verwenden Sie das Lining -Tool, um potenzielle Probleme im Voraus zu erkennen.

PHP und Python: Ein tiefes Eintauchen in ihre Geschichte PHP und Python: Ein tiefes Eintauchen in ihre Geschichte Apr 18, 2025 am 12:25 AM

PHP entstand 1994 und wurde von Rasmuslerdorf entwickelt. Es wurde ursprünglich verwendet, um Website-Besucher zu verfolgen und sich nach und nach zu einer serverseitigen Skriptsprache entwickelt und in der Webentwicklung häufig verwendet. Python wurde Ende der 1980er Jahre von Guidovan Rossum entwickelt und erstmals 1991 veröffentlicht. Es betont die Lesbarkeit und Einfachheit der Code und ist für wissenschaftliche Computer, Datenanalysen und andere Bereiche geeignet.

See all articles