Heim Backend-Entwicklung Golang Echtzeit-Stream-Verarbeitung mit Kafka und Flink in Beego

Echtzeit-Stream-Verarbeitung mit Kafka und Flink in Beego

Jun 22, 2023 pm 04:18 PM
kafka flink beego

Mit dem Aufkommen des Big-Data-Zeitalters müssen wir häufig Echtzeitdaten verarbeiten und analysieren. Die Echtzeit-Stream-Verarbeitungstechnologie hat sich aufgrund ihrer hohen Leistung, hohen Skalierbarkeit und geringen Latenz zu einer gängigen Methode für die Verarbeitung großer Echtzeitdaten entwickelt. In der Echtzeit-Stream-Verarbeitungstechnologie sind Kafka und Flink gemeinsame Komponenten und werden in vielen Datenverarbeitungssystemen auf Unternehmensebene häufig verwendet. In diesem Artikel stellen wir vor, wie man Kafka und Flink in Beego für die Echtzeit-Stream-Verarbeitung verwendet.

1. Einführung in Kafka

Apache Kafka ist eine verteilte Stream-Verarbeitungsplattform. Es entkoppelt Daten in einen Stream (Streaming-Daten) und verteilt die Daten auf mehrere Knoten und bietet so hohe Leistung, hohe Verfügbarkeit, hohe Skalierbarkeit und einige erweiterte Funktionen, wie z. B. die Exactly-Once-Garantie. Die Hauptaufgabe von Kafka besteht darin, ein zuverlässiges Nachrichtensystem zu sein, mit dem Kommunikationsprobleme zwischen mehreren Komponenten in verteilten Systemen gelöst und Nachrichten zuverlässig übertragen werden können.

2. Einführung in Flink

Flink ist ein ereignisgesteuertes, verteiltes, leistungsstarkes Big-Data-Stream-Verarbeitungsframework. Es unterstützt Stream- und Batch-Verarbeitung, verfügt über SQL-ähnliche Abfrage- und Stream-Verarbeitungsfunktionen, unterstützt hochgradig zusammensetzbares Streaming-Computing und verfügt über umfangreiche Fenster- und Datenspeicherunterstützung.

3. Kafka in Beego

Die Verwendung von Kafka in Beego ist hauptsächlich in zwei Teile unterteilt, nämlich Kafka-Konsumer und Kafka-Produzent.

  1. Kafka Producer

Durch die Verwendung von Kafka Producer in Beego können Daten problemlos an den Kafka-Cluster gesendet werden. Hier ist ein Beispiel für die Verwendung von Kafka Producer in Beego:

import (
    "github.com/Shopify/sarama"
)

func main() {
    // 创建 kafka 生产者
    producer, err := sarama.NewSyncProducer([]string{"localhost:9092"}, nil)

    if err != nil {
        // 处理错误情况
        panic(err)
    }

    // 创建 Kafka 消息
    msg := &sarama.ProducerMessage{
        Topic: "test",
        Value: sarama.StringEncoder("Hello, World!"),
    }

    // 发送消息
    partition, offset, err := producer.SendMessage(msg)

    if err != nil {
        // 处理错误情况
        panic(err)
    }

    fmt.Printf("消息已发送到分区 %d 的偏移量 %d 中
", partition, offset)

    // 关闭 Kafka 生产者
    producer.Close()
}
Nach dem Login kopieren
  1. Kafka Consumer

Die Verwendung von Kafka Consumer in Beego kann Das Folgende ist ein Beispiel für die Verwendung von Kafka-Konsumenten in Beego:

import (
    "github.com/Shopify/sarama"
)

func main() {
    // 创建 kafka 消费者
    consumer, err := sarama.NewConsumer([]string{"localhost:9092"}, nil)

    if err != nil {
        // 处理错误情况
        panic(err)
    }

    // 订阅 Topic
    partitions, err := consumer.Partitions("test")

    if err != nil {
        // 处理错误情况
        panic(err)
    }

    for _, partition := range partitions {
        // 从分区的开头读取数据
        partitionConsumer, _ := consumer.ConsumePartition("test", partition, sarama.OffsetOldest)

        // 处理数据
        go func(partitionConsumer sarama.PartitionConsumer) {
            for {
                select {
                case msg := <-partitionConsumer.Messages():
                    // 处理消息
                    fmt.Printf("收到消息: %v", string(msg.Value))
                }
            }
        }(partitionConsumer)
    }

    // 关闭 Kafka 消费者
    defer consumer.Close()
}
Nach dem Login kopieren

4. Die Verwendung von Flink in Beego kann direkt über die Java-API von Flink erfolgen Der Prozess wird durch die Cgo-Interaktion zwischen Java und Go abgeschlossen. Unten sehen Sie ein einfaches Beispiel von Flink, bei dem die Häufigkeit jedes Socket-Textworts durch Echtzeit-Stream-Verarbeitung berechnet wird. In diesem Beispiel lesen wir den angegebenen Textdatenstrom in Flink ein, verwenden dann die Operatoren von Flink, um den Datenstrom zu bearbeiten, und geben die Ergebnisse schließlich an die Konsole aus.

Erstellen Sie eine Socket-Textdatenquelle
  1. import org.apache.flink.streaming.api.functions.source.SourceFunction;
    
    import java.io.BufferedReader;
    import java.io.IOException;
    import java.io.InputStreamReader;
    import java.net.Socket;
    
    public class SocketTextStreamFunction implements SourceFunction<String> {
        private final String hostname;
        private final int port;
    
        public SocketTextStreamFunction(String hostname, int port) {
            this.hostname = hostname;
            this.port = port;
        }
    
        public void run(SourceContext<String> context) throws Exception {
            Socket socket = new Socket(hostname, port);
            BufferedReader reader = new BufferedReader(new InputStreamReader(socket.getInputStream()));
            String line;
            while ((line = reader.readLine()) != null) {
                context.collect(line);
            }
            reader.close();
            socket.close();
        }
    
        public void cancel() {}
    }
    Nach dem Login kopieren
Berechnen Sie die Häufigkeit jedes Wortes
  1. import org.apache.flink.streaming.api.datastream.DataStream;
    import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
    import org.apache.flink.streaming.api.functions.windowing.WindowFunction;
    import org.apache.flink.streaming.api.windowing.time.Time;
    import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
    import org.apache.flink.util.Collector;
    
    public class SocketTextStreamWordCount {
        public static void main(String[] args) throws Exception {
            String hostname = "localhost";
            int port = 9999;
    
            final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
    
            // 从 Socket 中读取数据流
            DataStream<String> text = env.addSource(new SocketTextStreamFunction(hostname, port));
    
            // 计算每个单词的出现频率
            DataStream<Tuple2<String, Integer>> wordCounts = text
                    .flatMap(new FlatMapFunction<String, Tuple2<String, Integer>>() {
                        public void flatMap(String value, Collector<Tuple2<String, Integer>> out) throws Exception {
                            String[] words = value.toLowerCase().split("\W+");
                            for (String word : words) {
                                out.collect(new Tuple2<String, Integer>(word, 1));
                            }
                        }
                    })
                    .keyBy(0)
                    .timeWindow(Time.seconds(5))
                    .apply(new WindowFunction<Tuple2<String, Integer>, Tuple2<String, Integer>, Tuple, TimeWindow>() {
                        public void apply(Tuple key, TimeWindow window, Iterable<Tuple2<String, Integer>> input, Collector<Tuple2<String, Integer>> out) throws Exception {
                            int sum = 0;
                            for (Tuple2<String, Integer> t : input) {
                                sum += t.f1;
                            }
                            out.collect(new Tuple2<String, Integer>((String) key.getField(0), sum));
                        }
                    });
    
            // 打印到控制台
            wordCounts.print();
    
            env.execute("Socket Text Stream Word Count");
        }
    }
    Nach dem Login kopieren
    5. Fazit

    In diesem Artikel wird erläutert, wie Sie Kafka und Flink in Beego für die Echtzeit-Stream-Verarbeitung verwenden. Kafka kann als zuverlässiges Nachrichtensystem verwendet werden und kann zur Lösung von Kommunikationsproblemen zwischen mehreren Komponenten in verteilten Systemen und zur zuverlässigen Übertragung von Nachrichten verwendet werden. Flink ist ein ereignisgesteuertes, verteiltes, leistungsstarkes Framework zur Verarbeitung von Big-Data-Streams. In praktischen Anwendungen können wir uns je nach Bedarf flexibel für den Einsatz von Technologien wie Kafka und Flink entscheiden, um Herausforderungen bei der groß angelegten Echtzeit-Datenverarbeitung zu lösen.

    Das obige ist der detaillierte Inhalt vonEchtzeit-Stream-Verarbeitung mit Kafka und Flink in Beego. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

Video Face Swap

Video Face Swap

Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

So implementieren Sie eine Echtzeit-Aktienanalyse mit PHP und Kafka So implementieren Sie eine Echtzeit-Aktienanalyse mit PHP und Kafka Jun 28, 2023 am 10:04 AM

Mit der Entwicklung des Internets und der Technologie sind digitale Investitionen zu einem Thema mit zunehmender Besorgnis geworden. Viele Anleger erforschen und studieren weiterhin Anlagestrategien in der Hoffnung, eine höhere Kapitalrendite zu erzielen. Im Aktienhandel ist die Aktienanalyse in Echtzeit für die Entscheidungsfindung sehr wichtig, und der Einsatz der Kafka-Echtzeit-Nachrichtenwarteschlange und der PHP-Technologie ist ein effizientes und praktisches Mittel. 1. Einführung in Kafka Kafka ist ein von LinkedIn entwickeltes verteiltes Publish- und Subscribe-Messagingsystem mit hohem Durchsatz. Die Hauptmerkmale von Kafka sind

So erstellen Sie Echtzeit-Datenverarbeitungsanwendungen mit React und Apache Kafka So erstellen Sie Echtzeit-Datenverarbeitungsanwendungen mit React und Apache Kafka Sep 27, 2023 pm 02:25 PM

So verwenden Sie React und Apache Kafka zum Erstellen von Echtzeit-Datenverarbeitungsanwendungen. Einführung: Mit dem Aufkommen von Big Data und Echtzeit-Datenverarbeitung ist die Erstellung von Echtzeit-Datenverarbeitungsanwendungen für viele Entwickler zum Ziel geworden. Die Kombination von React, einem beliebten Front-End-Framework, und Apache Kafka, einem leistungsstarken verteilten Messaging-System, kann uns beim Aufbau von Echtzeit-Datenverarbeitungsanwendungen helfen. In diesem Artikel wird erläutert, wie Sie mit React und Apache Kafka Echtzeit-Datenverarbeitungsanwendungen erstellen

Fünf Auswahlmöglichkeiten an Visualisierungstools zur Erkundung von Kafka Fünf Auswahlmöglichkeiten an Visualisierungstools zur Erkundung von Kafka Feb 01, 2024 am 08:03 AM

Fünf Optionen für Kafka-Visualisierungstools ApacheKafka ist eine verteilte Stream-Verarbeitungsplattform, die große Mengen an Echtzeitdaten verarbeiten kann. Es wird häufig zum Aufbau von Echtzeit-Datenpipelines, Nachrichtenwarteschlangen und ereignisgesteuerten Anwendungen verwendet. Die Visualisierungstools von Kafka können Benutzern dabei helfen, Kafka-Cluster zu überwachen und zu verwalten und Kafka-Datenflüsse besser zu verstehen. Im Folgenden finden Sie eine Einführung in fünf beliebte Kafka-Visualisierungstools: ConfluentControlCenterConfluent

Vergleichende Analyse der Kafka-Visualisierungstools: Wie wählt man das am besten geeignete Tool aus? Vergleichende Analyse der Kafka-Visualisierungstools: Wie wählt man das am besten geeignete Tool aus? Jan 05, 2024 pm 12:15 PM

Wie wählt man das richtige Kafka-Visualisierungstool aus? Vergleichende Analyse von fünf Tools Einführung: Kafka ist ein leistungsstarkes verteiltes Nachrichtenwarteschlangensystem mit hohem Durchsatz, das im Bereich Big Data weit verbreitet ist. Mit der Popularität von Kafka benötigen immer mehr Unternehmen und Entwickler ein visuelles Tool zur einfachen Überwachung und Verwaltung von Kafka-Clustern. In diesem Artikel werden fünf häufig verwendete Kafka-Visualisierungstools vorgestellt und ihre Merkmale und Funktionen verglichen, um den Lesern bei der Auswahl des Tools zu helfen, das ihren Anforderungen entspricht. 1. KafkaManager

Fünf ausgewählte Open-Source-Projekte in der Go-Sprache, mit denen Sie die Welt der Technologie erkunden können Fünf ausgewählte Open-Source-Projekte in der Go-Sprache, mit denen Sie die Welt der Technologie erkunden können Jan 30, 2024 am 09:08 AM

Im heutigen Zeitalter der rasanten technologischen Entwicklung schießen Programmiersprachen wie Pilze nach einem Regenschauer aus dem Boden. Eine der Sprachen, die viel Aufmerksamkeit erregt hat, ist die Go-Sprache, die von vielen Entwicklern wegen ihrer Einfachheit, Effizienz, Parallelitätssicherheit und anderen Funktionen geliebt wird. Die Go-Sprache ist für ihr starkes Ökosystem mit vielen hervorragenden Open-Source-Projekten bekannt. In diesem Artikel werden fünf ausgewählte Open-Source-Projekte für die Go-Sprache vorgestellt und der Leser soll die Welt der Open-Source-Projekte für die Go-Sprache erkunden. KubernetesKubernetes ist eine Open-Source-Container-Orchestrierungs-Engine für die Automatisierung

Die Praxis von Go-Zero und Kafka+Avro: Aufbau eines leistungsstarken interaktiven Datenverarbeitungssystems Die Praxis von Go-Zero und Kafka+Avro: Aufbau eines leistungsstarken interaktiven Datenverarbeitungssystems Jun 23, 2023 am 09:04 AM

In den letzten Jahren haben mit dem Aufkommen von Big Data und aktiven Open-Source-Communities immer mehr Unternehmen begonnen, nach leistungsstarken interaktiven Datenverarbeitungssystemen zu suchen, um den wachsenden Datenanforderungen gerecht zu werden. In dieser Welle von Technologie-Upgrades werden Go-Zero und Kafka+Avro von immer mehr Unternehmen beachtet und übernommen. go-zero ist ein auf der Golang-Sprache entwickeltes Microservice-Framework. Es zeichnet sich durch hohe Leistung, Benutzerfreundlichkeit, einfache Erweiterung und einfache Wartung aus und soll Unternehmen dabei helfen, schnell effiziente Microservice-Anwendungssysteme aufzubauen. sein schnelles Wachstum

Produktionsbereitstellung und -verwaltung mit Docker und Kubernetes in Beego Produktionsbereitstellung und -verwaltung mit Docker und Kubernetes in Beego Jun 23, 2023 am 08:58 AM

Mit der rasanten Entwicklung des Internets haben immer mehr Unternehmen damit begonnen, ihre Anwendungen auf Cloud-Plattformen zu migrieren. Docker und Kubernetes sind zu zwei sehr beliebten und leistungsstarken Tools für die Anwendungsbereitstellung und -verwaltung auf Cloud-Plattformen geworden. Beego ist ein mit Golang entwickeltes Web-Framework, das umfangreiche Funktionen wie HTTP-Routing, MVC-Layering, Protokollierung, Konfigurationsverwaltung und Sitzungsverwaltung bietet. In diesem Artikel behandeln wir die Verwendung von Docker und Kub

Wie installiere ich Apache Kafka unter Rocky Linux? Wie installiere ich Apache Kafka unter Rocky Linux? Mar 01, 2024 pm 10:37 PM

Um ApacheKafka auf RockyLinux zu installieren, können Sie die folgenden Schritte ausführen: Aktualisieren Sie das System: Stellen Sie zunächst sicher, dass Ihr RockyLinux-System auf dem neuesten Stand ist. Führen Sie den folgenden Befehl aus, um die Systempakete zu aktualisieren: sudoyumupdate Java installieren: ApacheKafka hängt von Java ab, also von Ihnen Sie müssen zuerst JavaDevelopmentKit (JDK) installieren. OpenJDK kann mit dem folgenden Befehl installiert werden: sudoyuminstalljava-1.8.0-openjdk-devel Herunterladen und dekomprimieren: Besuchen Sie die offizielle Website von ApacheKafka (), um das neueste Binärpaket herunterzuladen. Wählen Sie eine stabile Version

See all articles