Echtzeit-Stream-Verarbeitung mit Kafka und Flink in Beego
Mit dem Aufkommen des Big-Data-Zeitalters müssen wir häufig Echtzeitdaten verarbeiten und analysieren. Die Echtzeit-Stream-Verarbeitungstechnologie hat sich aufgrund ihrer hohen Leistung, hohen Skalierbarkeit und geringen Latenz zu einer gängigen Methode für die Verarbeitung großer Echtzeitdaten entwickelt. In der Echtzeit-Stream-Verarbeitungstechnologie sind Kafka und Flink gemeinsame Komponenten und werden in vielen Datenverarbeitungssystemen auf Unternehmensebene häufig verwendet. In diesem Artikel stellen wir vor, wie man Kafka und Flink in Beego für die Echtzeit-Stream-Verarbeitung verwendet.
1. Einführung in Kafka
Apache Kafka ist eine verteilte Stream-Verarbeitungsplattform. Es entkoppelt Daten in einen Stream (Streaming-Daten) und verteilt die Daten auf mehrere Knoten und bietet so hohe Leistung, hohe Verfügbarkeit, hohe Skalierbarkeit und einige erweiterte Funktionen, wie z. B. die Exactly-Once-Garantie. Die Hauptaufgabe von Kafka besteht darin, ein zuverlässiges Nachrichtensystem zu sein, mit dem Kommunikationsprobleme zwischen mehreren Komponenten in verteilten Systemen gelöst und Nachrichten zuverlässig übertragen werden können.
2. Einführung in Flink
Flink ist ein ereignisgesteuertes, verteiltes, leistungsstarkes Big-Data-Stream-Verarbeitungsframework. Es unterstützt Stream- und Batch-Verarbeitung, verfügt über SQL-ähnliche Abfrage- und Stream-Verarbeitungsfunktionen, unterstützt hochgradig zusammensetzbares Streaming-Computing und verfügt über umfangreiche Fenster- und Datenspeicherunterstützung.
3. Kafka in Beego
Die Verwendung von Kafka in Beego ist hauptsächlich in zwei Teile unterteilt, nämlich Kafka-Konsumer und Kafka-Produzent.
- Kafka Producer
Durch die Verwendung von Kafka Producer in Beego können Daten problemlos an den Kafka-Cluster gesendet werden. Hier ist ein Beispiel für die Verwendung von Kafka Producer in Beego:
import ( "github.com/Shopify/sarama" ) func main() { // 创建 kafka 生产者 producer, err := sarama.NewSyncProducer([]string{"localhost:9092"}, nil) if err != nil { // 处理错误情况 panic(err) } // 创建 Kafka 消息 msg := &sarama.ProducerMessage{ Topic: "test", Value: sarama.StringEncoder("Hello, World!"), } // 发送消息 partition, offset, err := producer.SendMessage(msg) if err != nil { // 处理错误情况 panic(err) } fmt.Printf("消息已发送到分区 %d 的偏移量 %d 中 ", partition, offset) // 关闭 Kafka 生产者 producer.Close() }
- Kafka Consumer
Die Verwendung von Kafka Consumer in Beego kann Das Folgende ist ein Beispiel für die Verwendung von Kafka-Konsumenten in Beego:
import ( "github.com/Shopify/sarama" ) func main() { // 创建 kafka 消费者 consumer, err := sarama.NewConsumer([]string{"localhost:9092"}, nil) if err != nil { // 处理错误情况 panic(err) } // 订阅 Topic partitions, err := consumer.Partitions("test") if err != nil { // 处理错误情况 panic(err) } for _, partition := range partitions { // 从分区的开头读取数据 partitionConsumer, _ := consumer.ConsumePartition("test", partition, sarama.OffsetOldest) // 处理数据 go func(partitionConsumer sarama.PartitionConsumer) { for { select { case msg := <-partitionConsumer.Messages(): // 处理消息 fmt.Printf("收到消息: %v", string(msg.Value)) } } }(partitionConsumer) } // 关闭 Kafka 消费者 defer consumer.Close() }
4. Die Verwendung von Flink in Beego kann direkt über die Java-API von Flink erfolgen Der Prozess wird durch die Cgo-Interaktion zwischen Java und Go abgeschlossen. Unten sehen Sie ein einfaches Beispiel von Flink, bei dem die Häufigkeit jedes Socket-Textworts durch Echtzeit-Stream-Verarbeitung berechnet wird. In diesem Beispiel lesen wir den angegebenen Textdatenstrom in Flink ein, verwenden dann die Operatoren von Flink, um den Datenstrom zu bearbeiten, und geben die Ergebnisse schließlich an die Konsole aus.
Erstellen Sie eine Socket-Textdatenquelleimport org.apache.flink.streaming.api.functions.source.SourceFunction; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.net.Socket; public class SocketTextStreamFunction implements SourceFunction<String> { private final String hostname; private final int port; public SocketTextStreamFunction(String hostname, int port) { this.hostname = hostname; this.port = port; } public void run(SourceContext<String> context) throws Exception { Socket socket = new Socket(hostname, port); BufferedReader reader = new BufferedReader(new InputStreamReader(socket.getInputStream())); String line; while ((line = reader.readLine()) != null) { context.collect(line); } reader.close(); socket.close(); } public void cancel() {} }
Nach dem Login kopieren
- 5. Fazit
import org.apache.flink.streaming.api.datastream.DataStream; import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; import org.apache.flink.streaming.api.functions.windowing.WindowFunction; import org.apache.flink.streaming.api.windowing.time.Time; import org.apache.flink.streaming.api.windowing.windows.TimeWindow; import org.apache.flink.util.Collector; public class SocketTextStreamWordCount { public static void main(String[] args) throws Exception { String hostname = "localhost"; int port = 9999; final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); // 从 Socket 中读取数据流 DataStream<String> text = env.addSource(new SocketTextStreamFunction(hostname, port)); // 计算每个单词的出现频率 DataStream<Tuple2<String, Integer>> wordCounts = text .flatMap(new FlatMapFunction<String, Tuple2<String, Integer>>() { public void flatMap(String value, Collector<Tuple2<String, Integer>> out) throws Exception { String[] words = value.toLowerCase().split("\W+"); for (String word : words) { out.collect(new Tuple2<String, Integer>(word, 1)); } } }) .keyBy(0) .timeWindow(Time.seconds(5)) .apply(new WindowFunction<Tuple2<String, Integer>, Tuple2<String, Integer>, Tuple, TimeWindow>() { public void apply(Tuple key, TimeWindow window, Iterable<Tuple2<String, Integer>> input, Collector<Tuple2<String, Integer>> out) throws Exception { int sum = 0; for (Tuple2<String, Integer> t : input) { sum += t.f1; } out.collect(new Tuple2<String, Integer>((String) key.getField(0), sum)); } }); // 打印到控制台 wordCounts.print(); env.execute("Socket Text Stream Word Count"); } }
Nach dem Login kopierenIn diesem Artikel wird erläutert, wie Sie Kafka und Flink in Beego für die Echtzeit-Stream-Verarbeitung verwenden. Kafka kann als zuverlässiges Nachrichtensystem verwendet werden und kann zur Lösung von Kommunikationsproblemen zwischen mehreren Komponenten in verteilten Systemen und zur zuverlässigen Übertragung von Nachrichten verwendet werden. Flink ist ein ereignisgesteuertes, verteiltes, leistungsstarkes Framework zur Verarbeitung von Big-Data-Streams. In praktischen Anwendungen können wir uns je nach Bedarf flexibel für den Einsatz von Technologien wie Kafka und Flink entscheiden, um Herausforderungen bei der groß angelegten Echtzeit-Datenverarbeitung zu lösen.
Das obige ist der detaillierte Inhalt vonEchtzeit-Stream-Verarbeitung mit Kafka und Flink in Beego. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



Mit der Entwicklung des Internets und der Technologie sind digitale Investitionen zu einem Thema mit zunehmender Besorgnis geworden. Viele Anleger erforschen und studieren weiterhin Anlagestrategien in der Hoffnung, eine höhere Kapitalrendite zu erzielen. Im Aktienhandel ist die Aktienanalyse in Echtzeit für die Entscheidungsfindung sehr wichtig, und der Einsatz der Kafka-Echtzeit-Nachrichtenwarteschlange und der PHP-Technologie ist ein effizientes und praktisches Mittel. 1. Einführung in Kafka Kafka ist ein von LinkedIn entwickeltes verteiltes Publish- und Subscribe-Messagingsystem mit hohem Durchsatz. Die Hauptmerkmale von Kafka sind

So verwenden Sie React und Apache Kafka zum Erstellen von Echtzeit-Datenverarbeitungsanwendungen. Einführung: Mit dem Aufkommen von Big Data und Echtzeit-Datenverarbeitung ist die Erstellung von Echtzeit-Datenverarbeitungsanwendungen für viele Entwickler zum Ziel geworden. Die Kombination von React, einem beliebten Front-End-Framework, und Apache Kafka, einem leistungsstarken verteilten Messaging-System, kann uns beim Aufbau von Echtzeit-Datenverarbeitungsanwendungen helfen. In diesem Artikel wird erläutert, wie Sie mit React und Apache Kafka Echtzeit-Datenverarbeitungsanwendungen erstellen

Fünf Optionen für Kafka-Visualisierungstools ApacheKafka ist eine verteilte Stream-Verarbeitungsplattform, die große Mengen an Echtzeitdaten verarbeiten kann. Es wird häufig zum Aufbau von Echtzeit-Datenpipelines, Nachrichtenwarteschlangen und ereignisgesteuerten Anwendungen verwendet. Die Visualisierungstools von Kafka können Benutzern dabei helfen, Kafka-Cluster zu überwachen und zu verwalten und Kafka-Datenflüsse besser zu verstehen. Im Folgenden finden Sie eine Einführung in fünf beliebte Kafka-Visualisierungstools: ConfluentControlCenterConfluent

Wie wählt man das richtige Kafka-Visualisierungstool aus? Vergleichende Analyse von fünf Tools Einführung: Kafka ist ein leistungsstarkes verteiltes Nachrichtenwarteschlangensystem mit hohem Durchsatz, das im Bereich Big Data weit verbreitet ist. Mit der Popularität von Kafka benötigen immer mehr Unternehmen und Entwickler ein visuelles Tool zur einfachen Überwachung und Verwaltung von Kafka-Clustern. In diesem Artikel werden fünf häufig verwendete Kafka-Visualisierungstools vorgestellt und ihre Merkmale und Funktionen verglichen, um den Lesern bei der Auswahl des Tools zu helfen, das ihren Anforderungen entspricht. 1. KafkaManager

Im heutigen Zeitalter der rasanten technologischen Entwicklung schießen Programmiersprachen wie Pilze nach einem Regenschauer aus dem Boden. Eine der Sprachen, die viel Aufmerksamkeit erregt hat, ist die Go-Sprache, die von vielen Entwicklern wegen ihrer Einfachheit, Effizienz, Parallelitätssicherheit und anderen Funktionen geliebt wird. Die Go-Sprache ist für ihr starkes Ökosystem mit vielen hervorragenden Open-Source-Projekten bekannt. In diesem Artikel werden fünf ausgewählte Open-Source-Projekte für die Go-Sprache vorgestellt und der Leser soll die Welt der Open-Source-Projekte für die Go-Sprache erkunden. KubernetesKubernetes ist eine Open-Source-Container-Orchestrierungs-Engine für die Automatisierung

In den letzten Jahren haben mit dem Aufkommen von Big Data und aktiven Open-Source-Communities immer mehr Unternehmen begonnen, nach leistungsstarken interaktiven Datenverarbeitungssystemen zu suchen, um den wachsenden Datenanforderungen gerecht zu werden. In dieser Welle von Technologie-Upgrades werden Go-Zero und Kafka+Avro von immer mehr Unternehmen beachtet und übernommen. go-zero ist ein auf der Golang-Sprache entwickeltes Microservice-Framework. Es zeichnet sich durch hohe Leistung, Benutzerfreundlichkeit, einfache Erweiterung und einfache Wartung aus und soll Unternehmen dabei helfen, schnell effiziente Microservice-Anwendungssysteme aufzubauen. sein schnelles Wachstum

Mit der rasanten Entwicklung des Internets haben immer mehr Unternehmen damit begonnen, ihre Anwendungen auf Cloud-Plattformen zu migrieren. Docker und Kubernetes sind zu zwei sehr beliebten und leistungsstarken Tools für die Anwendungsbereitstellung und -verwaltung auf Cloud-Plattformen geworden. Beego ist ein mit Golang entwickeltes Web-Framework, das umfangreiche Funktionen wie HTTP-Routing, MVC-Layering, Protokollierung, Konfigurationsverwaltung und Sitzungsverwaltung bietet. In diesem Artikel behandeln wir die Verwendung von Docker und Kub

Um ApacheKafka auf RockyLinux zu installieren, können Sie die folgenden Schritte ausführen: Aktualisieren Sie das System: Stellen Sie zunächst sicher, dass Ihr RockyLinux-System auf dem neuesten Stand ist. Führen Sie den folgenden Befehl aus, um die Systempakete zu aktualisieren: sudoyumupdate Java installieren: ApacheKafka hängt von Java ab, also von Ihnen Sie müssen zuerst JavaDevelopmentKit (JDK) installieren. OpenJDK kann mit dem folgenden Befehl installiert werden: sudoyuminstalljava-1.8.0-openjdk-devel Herunterladen und dekomprimieren: Besuchen Sie die offizielle Website von ApacheKafka (), um das neueste Binärpaket herunterzuladen. Wählen Sie eine stabile Version
