


So optimieren Sie den gleichzeitigen Scheduler in der Go-Sprachentwicklung
So optimieren Sie den gleichzeitigen Scheduler bei der Go-Sprachentwicklung
Einführung:
Mit der Entwicklung der Computertechnologie sind Mehrkernprozessoren zur Standardkonfiguration moderner Computersysteme geworden. Um die Leistung von Mehrkernprozessoren besser nutzen zu können, müssen Programmierer parallelisierte Programme entwickeln. Als parallelitätsorientierte Programmiersprache bietet die Go-Sprache leistungsstarke Parallelitätsunterstützung, wobei der gleichzeitige Scheduler eine der Schlüsselkomponenten zum Erreichen der Parallelität ist. In diesem Artikel wird erläutert, wie Sie den gleichzeitigen Scheduler in der Go-Sprachentwicklung optimieren können, um die Programmleistung und -effizienz zu verbessern.
1. So funktioniert der gleichzeitige Scheduler
In der Go-Sprache ist Goroutine die Grundeinheit zum Erreichen der Parallelität. Der gleichzeitige Scheduler ist für die Zuordnung von Goroutinen zu Threads und die Planung der Ausführung von Goroutinen entsprechend Threads verantwortlich. Es funktioniert wie folgt:
- Erstellen Sie einen Thread-Pool: Der gleichzeitige Scheduler erstellt zunächst einen Thread-Pool. Die Anzahl der Threads im Thread-Pool entspricht normalerweise der Anzahl der Kerne des Computersystems, und jeder Thread entspricht einem Prozessorkern.
- Goroutinen Threads zuordnen: Wenn eine neue Goroutine im Programm erscheint, fügt der Scheduler sie der Warteschlange hinzu und wartet auf die Ausführung. Als nächstes wählt der Scheduler eine Goroutine aus der Warteschlange aus, die auf die Ausführung wartet, und ordnet sie dem Thread zu.
- Planen von Threads zur Ausführung einer Goroutine: Sobald eine Goroutine einem Thread zugeordnet ist, beginnt der Thread mit der Ausführung der Goroutine. Wenn die Goroutine die Ausführung abschließt oder blockiert, gibt der Thread die Goroutine frei und wählt eine neue Goroutine aus der Warteschlange aus, die auf die Ausführung wartet.
2. Methoden zur Optimierung des gleichzeitigen Schedulers
Für den gleichzeitigen Scheduler in der Go-Sprachentwicklung können wir die folgenden Optimierungsmethoden anwenden, um die Leistung und Effizienz des Programms zu verbessern.
- Passen Sie die Größe des Thread-Pools an: Die Größe des Thread-Pools hat einen direkten Einfluss auf die Leistung des gleichzeitigen Schedulers. Wenn die Anzahl der Threads im Thread-Pool zu gering ist, kann das System die Anzahl der Kerne des Computersystems nicht vollständig nutzen, wodurch der Grad der Parallelität verringert wird. Wenn der Thread-Pool zu viele Threads enthält, erhöhen sich die Kosten für den Thread-Wechsel, wodurch die Effizienz des Programms verringert wird. Daher kann die richtige Anpassung der Größe des Thread-Pools die Leistung des gleichzeitigen Schedulers verbessern.
- Verwenden Sie den Work-Stealing-Algorithmus: Der Work-Stealing-Algorithmus ist ein Planungsalgorithmus, der häufig in der parallelen Programmierung verwendet wird. Er kann Aufgaben von anderen Threads zur Ausführung stehlen, wenn der Thread keine ausführbaren Aufgaben hat. Im gleichzeitigen Scheduler der Go-Sprache kann der Work-Stealing-Algorithmus verwendet werden, um die Last zwischen Threads auszugleichen, die Parallelität des Programms zu verbessern und somit die Leistung des Schedulers zu verbessern.
- Sperrennutzung reduzieren: Bei der Multithread-Programmierung sind Sperren ein häufiger Synchronisationsmechanismus, eine übermäßige Sperrennutzung kann jedoch zu Problemen wie Rennbedingungen und Deadlocks führen. Um die Leistung des gleichzeitigen Schedulers zu optimieren, sollte daher die Verwendung von Sperren minimiert werden. Sperrenfreie Datenstrukturen, parallelitätssichere Datenstrukturen oder feinkörnigere Sperren können verwendet werden, um den Wettbewerb um gemeinsam genutzte Ressourcen zu verringern und dadurch die Programmparallelität zu verbessern.
- Vermeiden Sie übermäßiges Erstellen und Zerstören von Goroutinen: Das Erstellen und Zerstören von Goroutinen ist ein ressourcenintensiver Vorgang. Übermäßiges Erstellen und Zerstören von Goroutinen erhöht den Overhead des Schedulers und verringert die Programmleistung. Um die Leistung des gleichzeitigen Schedulers zu optimieren, sollte daher die übermäßige Erstellung und Zerstörung von Goroutinen so weit wie möglich vermieden werden. Ein Goroutine-Pool kann zur Wiederverwendung von Goroutinen verwendet werden, wodurch die Anzahl der Erstellungen und Zerstörungen verringert wird.
- Optimieren Sie die Planungsstrategie von Goroutine: Der gleichzeitige Scheduler der Go-Sprache bietet einige planungsbezogene Funktionen und Optionen, mit denen die Planungsstrategie von Goroutine entsprechend bestimmten Geschäftsszenarien optimiert und dadurch die Leistung des Schedulers verbessert werden kann. Sie können beispielsweise die Scheduler-Funktion Gosched() verwenden, um die Ausführungsrechte der aktuellen Goroutine aktiv aufzugeben und so die Ausführungseffizienz anderer Goroutinen zu verbessern.
Fazit:
Die Optimierung des gleichzeitigen Schedulers ist eines der wichtigen Mittel zur Verbesserung der Leistung und Effizienz von Go-Sprachprogrammen. Durch die richtige Anpassung der Größe des Thread-Pools, die Verwendung von arbeitsraubenden Algorithmen, die Reduzierung der Verwendung von Sperren, die Vermeidung übermäßiger Erstellung und Zerstörung von Goroutinen und die Optimierung der Goroutine-Planungsstrategie können wir die Leistung des gleichzeitigen Schedulers effektiv verbessern. Durch die Optimierung des gleichzeitigen Schedulers kann nicht nur die Leistung von Mehrkernprozessoren voll ausgenutzt werden, sondern auch die Reaktionsgeschwindigkeit und der Durchsatz des Programms sowie das Benutzererlebnis verbessert werden.
Das obige ist der detaillierte Inhalt vonSo optimieren Sie den gleichzeitigen Scheduler in der Go-Sprachentwicklung. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen

Sie können Reflektion verwenden, um auf private Felder und Methoden in der Go-Sprache zuzugreifen: So greifen Sie auf private Felder zu: Rufen Sie den Reflektionswert des Werts über „reflect.ValueOf()“ ab, verwenden Sie dann „FieldByName()“, um den Reflektionswert des Felds abzurufen, und rufen Sie auf String()-Methode zum Drucken des Feldwerts. Rufen Sie eine private Methode auf: Rufen Sie auch den Reflexionswert des Werts über Reflect.ValueOf () ab, verwenden Sie dann MethodByName (), um den Reflexionswert der Methode abzurufen, und rufen Sie schließlich die Methode Call () auf, um die Methode auszuführen. Praktischer Fall: Ändern Sie private Feldwerte und rufen Sie private Methoden durch Reflexion auf, um Objektkontrolle und Komponententestabdeckung zu erreichen.

Leistungstests bewerten die Leistung einer Anwendung unter verschiedenen Lasten, während Komponententests die Korrektheit einer einzelnen Codeeinheit überprüfen. Leistungstests konzentrieren sich auf die Messung von Antwortzeit und Durchsatz, während Unit-Tests sich auf Funktionsausgabe und Codeabdeckung konzentrieren. Leistungstests simulieren reale Umgebungen mit hoher Last und Parallelität, während Unit-Tests unter niedrigen Last- und seriellen Bedingungen ausgeführt werden. Das Ziel von Leistungstests besteht darin, Leistungsengpässe zu identifizieren und die Anwendung zu optimieren, während das Ziel von Unit-Tests darin besteht, die Korrektheit und Robustheit des Codes sicherzustellen.

Die Zeitkomplexität misst die Ausführungszeit eines Algorithmus im Verhältnis zur Größe der Eingabe. Zu den Tipps zur Reduzierung der Zeitkomplexität von C++-Programmen gehören: Auswahl geeigneter Container (z. B. Vektor, Liste) zur Optimierung der Datenspeicherung und -verwaltung. Nutzen Sie effiziente Algorithmen wie die schnelle Sortierung, um die Rechenzeit zu verkürzen. Eliminieren Sie mehrere Vorgänge, um Doppelzählungen zu reduzieren. Verwenden Sie bedingte Verzweigungen, um unnötige Berechnungen zu vermeiden. Optimieren Sie die lineare Suche, indem Sie schnellere Algorithmen wie die binäre Suche verwenden.

Fallstricke in der Go-Sprache beim Entwurf verteilter Systeme Go ist eine beliebte Sprache für die Entwicklung verteilter Systeme. Allerdings gibt es bei der Verwendung von Go einige Fallstricke zu beachten, die die Robustheit, Leistung und Korrektheit Ihres Systems beeinträchtigen können. In diesem Artikel werden einige häufige Fallstricke untersucht und praktische Beispiele für deren Vermeidung gegeben. 1. Übermäßiger Gebrauch von Parallelität Go ist eine Parallelitätssprache, die Entwickler dazu ermutigt, Goroutinen zu verwenden, um die Parallelität zu erhöhen. Eine übermäßige Nutzung von Parallelität kann jedoch zu Systeminstabilität führen, da zu viele Goroutinen um Ressourcen konkurrieren und einen Mehraufwand beim Kontextwechsel verursachen. Praktischer Fall: Übermäßiger Einsatz von Parallelität führt zu Verzögerungen bei der Dienstantwort und Ressourcenkonkurrenz, was sich in einer hohen CPU-Auslastung und einem hohen Aufwand für die Speicherbereinigung äußert.

Zu den Bibliotheken und Tools für maschinelles Lernen in der Go-Sprache gehören: TensorFlow: eine beliebte Bibliothek für maschinelles Lernen, die Tools zum Erstellen, Trainieren und Bereitstellen von Modellen bereitstellt. GoLearn: Eine Reihe von Klassifizierungs-, Regressions- und Clustering-Algorithmen. Gonum: Eine wissenschaftliche Computerbibliothek, die Matrixoperationen und lineare Algebrafunktionen bereitstellt.

Aufgrund ihrer hohen Parallelität, Effizienz und plattformübergreifenden Natur ist die Go-Sprache eine ideale Wahl für die Entwicklung mobiler Internet-of-Things-Anwendungen (IoT). Das Parallelitätsmodell von Go erreicht durch Goroutinen (Lightweight Coroutines) einen hohen Grad an Parallelität, der für die Handhabung einer großen Anzahl gleichzeitig verbundener IoT-Geräte geeignet ist. Der geringe Ressourcenverbrauch von Go trägt dazu bei, Anwendungen auf mobilen Geräten mit begrenzter Rechenleistung und Speicherkapazität effizient auszuführen. Darüber hinaus ermöglicht die plattformübergreifende Unterstützung von Go die einfache Bereitstellung von IoT-Anwendungen auf einer Vielzahl mobiler Geräte. Der praktische Fall demonstriert die Verwendung von Go zum Erstellen einer BLE-Temperatursensoranwendung, die Kommunikation mit dem Sensor über BLE und die Verarbeitung eingehender Daten zum Lesen und Anzeigen von Temperaturmesswerten.

Die Entwicklung der Benennungskonvention für Golang-Funktionen ist wie folgt: Frühes Stadium (Go1.0): Es gibt keine formale Konvention und es wird Kamelbenennung verwendet. Unterstrichkonvention (Go1.5): Exportierte Funktionen beginnen mit einem Großbuchstaben und werden mit einem Unterstrich vorangestellt. Factory-Funktionskonvention (Go1.13): Funktionen, die neue Objekte erstellen, werden durch das Präfix „New“ dargestellt.

In der Go-Sprache können variable Parameter nicht als Funktionsrückgabewerte verwendet werden, da der Rückgabewert der Funktion von einem festen Typ sein muss. Variadics sind untypisiert und können daher nicht als Rückgabewerte verwendet werden.
