


Lernen Sie Python, um die Docking- und Bildkonvertierungsfunktion der Qiniu Cloud-Schnittstelle zu implementieren
Lernen Sie Python, um das Andocken der Qiniu Cloud-Schnittstelle zu implementieren und die Bildkonvertierungsfunktion zu realisieren
Einführung:
Mit der Entwicklung des Internets spielen Bilder eine sehr wichtige Rolle in unserem täglichen Leben. Bei der Website-Entwicklung ist die Bildkonvertierung eine häufige Anforderung, beispielsweise das Skalieren, Zuschneiden oder Formatkonvertieren von Bildern. Qiniu Cloud ist ein bekannter Cloud-Speicherdienstleister in China, der leistungsstarke und stabile Bildverarbeitungsfunktionen bereitstellt. In diesem Artikel wird erläutert, wie Sie mithilfe der Python-Sprache eine Verbindung zur Schnittstelle von Qiniu Cloud herstellen und die Bildkonvertierungsfunktion realisieren.
1. Vorbereitung:
- Registrieren Sie ein Qiniu Cloud-Konto und erstellen Sie einen Speicherplatz.
- Installieren Sie die Anforderungsbibliothek von Python zum Senden von HTTP-Anforderungen.
- Holen Sie sich den AccessKey und den SecretKey von Qiniu Cloud Storage Space.
2. Abhängige Bibliotheken importieren:
Um die Anforderungsbibliothek zum Senden von HTTP-Anforderungen in einem Python-Projekt zu verwenden, müssen wir zuerst die Anforderungsbibliothek in den Code importieren.
1 |
|
3. Besorgen Sie sich das Upload-Zertifikat von Qiniu Cloud:
Bevor wir Bilder hochladen, müssen wir zuerst ein Upload-Zertifikat erhalten. Das Upload-Zertifikat von Qiniu Cloud ist ein Token, der zum Hochladen von Dateien verwendet wird und zur Überprüfung der Rechtmäßigkeit des Upload-Verhaltens dient. Der folgende Code zeigt, wie Sie die Upload-Anmeldeinformationen über die API von Qiniu Cloud erhalten.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
|
4. Bilddateien hochladen:
Nach Erhalt des Upload-Zertifikats können wir mit dem Hochladen von Bilddateien beginnen. In Qiniu Cloud können wir einen benutzerdefinierten Schlüssel verwenden, um hochgeladene Dateiressourcen zu identifizieren. Der folgende Code zeigt, wie Sie mithilfe der Python-Sprache Bilddateien in Qiniu Cloud hochladen.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 |
|
5. Führen Sie Bildkonvertierungsvorgänge durch:
Nach dem erfolgreichen Hochladen der Bilddatei können wir über die API von Qiniu Cloud verschiedene Konvertierungsvorgänge für das Bild durchführen. Qiniu Cloud bietet viele leistungsstarke Bildverarbeitungsfunktionen wie Bildskalierung, Zuschneiden, Formatkonvertierung usw. Der folgende Code zeigt, wie Sie mithilfe der Python-Sprache die Schnittstelle von Qiniu Cloud aufrufen, um eine Bildskalierung und Formatkonvertierung zu erreichen.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 |
|
6. Zusammenfassung:
In diesem Artikel wird erläutert, wie Sie mithilfe der Python-Sprache eine Verbindung zur Schnittstelle von Qiniu Cloud herstellen und die Bildkonvertierungsfunktion realisieren. Durch das Studium dieses Artikels können Sie lernen, wie Sie die Python-Sprache und die API von Qiniu Cloud zum Hochladen und Konvertieren von Bildern verwenden. Ich hoffe, dieser Artikel kann Ihnen bei der Verwendung von Qiniu Cloud für die Bildverarbeitung hilfreich sein.
Das obige ist der detaillierte Inhalt vonLernen Sie Python, um die Docking- und Bildkonvertierungsfunktion der Qiniu Cloud-Schnittstelle zu implementieren. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



PHP und Python haben ihre eigenen Vor- und Nachteile, und die Wahl hängt von den Projektbedürfnissen und persönlichen Vorlieben ab. 1.PHP eignet sich für eine schnelle Entwicklung und Wartung großer Webanwendungen. 2. Python dominiert das Gebiet der Datenwissenschaft und des maschinellen Lernens.

Aktivieren Sie die Pytorch -GPU -Beschleunigung am CentOS -System erfordert die Installation von CUDA-, CUDNN- und GPU -Versionen von Pytorch. Die folgenden Schritte führen Sie durch den Prozess: Cuda und Cudnn Installation Bestimmen Sie die CUDA-Version Kompatibilität: Verwenden Sie den Befehl nvidia-smi, um die von Ihrer NVIDIA-Grafikkarte unterstützte CUDA-Version anzuzeigen. Beispielsweise kann Ihre MX450 -Grafikkarte CUDA11.1 oder höher unterstützen. Download und installieren Sie Cudatoolkit: Besuchen Sie die offizielle Website von Nvidiacudatoolkit und laden Sie die entsprechende Version gemäß der höchsten CUDA -Version herunter und installieren Sie sie, die von Ihrer Grafikkarte unterstützt wird. Installieren Sie die Cudnn -Bibliothek:

Python und JavaScript haben ihre eigenen Vor- und Nachteile in Bezug auf Gemeinschaft, Bibliotheken und Ressourcen. 1) Die Python-Community ist freundlich und für Anfänger geeignet, aber die Front-End-Entwicklungsressourcen sind nicht so reich wie JavaScript. 2) Python ist leistungsstark in Bibliotheken für Datenwissenschaft und maschinelles Lernen, während JavaScript in Bibliotheken und Front-End-Entwicklungsbibliotheken und Frameworks besser ist. 3) Beide haben reichhaltige Lernressourcen, aber Python eignet sich zum Beginn der offiziellen Dokumente, während JavaScript mit Mdnwebdocs besser ist. Die Wahl sollte auf Projektbedürfnissen und persönlichen Interessen beruhen.

Docker verwendet Linux -Kernel -Funktionen, um eine effiziente und isolierte Anwendungsumgebung zu bieten. Sein Arbeitsprinzip lautet wie folgt: 1. Der Spiegel wird als schreibgeschützte Vorlage verwendet, die alles enthält, was Sie für die Ausführung der Anwendung benötigen. 2. Das Union File System (UnionFS) stapelt mehrere Dateisysteme, speichert nur die Unterschiede, speichert Platz und beschleunigt. 3. Der Daemon verwaltet die Spiegel und Container, und der Kunde verwendet sie für die Interaktion. 4. Namespaces und CGroups implementieren Container -Isolation und Ressourcenbeschränkungen; 5. Mehrere Netzwerkmodi unterstützen die Containerverbindung. Nur wenn Sie diese Kernkonzepte verstehen, können Sie Docker besser nutzen.

Minio-Objektspeicherung: Hochleistungs-Bereitstellung im Rahmen von CentOS System Minio ist ein hochleistungsfähiges, verteiltes Objektspeichersystem, das auf der GO-Sprache entwickelt wurde und mit Amazons3 kompatibel ist. Es unterstützt eine Vielzahl von Kundensprachen, darunter Java, Python, JavaScript und Go. In diesem Artikel wird kurz die Installation und Kompatibilität von Minio zu CentOS -Systemen vorgestellt. CentOS -Versionskompatibilitätsminio wurde in mehreren CentOS -Versionen verifiziert, einschließlich, aber nicht beschränkt auf: CentOS7.9: Bietet einen vollständigen Installationshandbuch für die Clusterkonfiguration, die Umgebungsvorbereitung, die Einstellungen von Konfigurationsdateien, eine Festplattenpartitionierung und Mini

Pytorch Distributed Training on CentOS -System erfordert die folgenden Schritte: Pytorch -Installation: Die Prämisse ist, dass Python und PIP im CentOS -System installiert sind. Nehmen Sie abhängig von Ihrer CUDA -Version den entsprechenden Installationsbefehl von der offiziellen Pytorch -Website ab. Für CPU-Schulungen können Sie den folgenden Befehl verwenden: PipinstallTorChTorChVisionTorChaudio Wenn Sie GPU-Unterstützung benötigen, stellen Sie sicher, dass die entsprechende Version von CUDA und CUDNN installiert ist und die entsprechende Pytorch-Version für die Installation verwenden. Konfiguration der verteilten Umgebung: Verteiltes Training erfordert in der Regel mehrere Maschinen oder mehrere Maschinen-Mehrfach-GPUs. Ort

Die Installation von CentOS-Installationen erfordert die folgenden Schritte: Installieren von Abhängigkeiten wie Entwicklungstools, PCRE-Devel und OpenSSL-Devel. Laden Sie das Nginx -Quellcode -Paket herunter, entpacken Sie es, kompilieren Sie es und installieren Sie es und geben Sie den Installationspfad als/usr/local/nginx an. Erstellen Sie NGINX -Benutzer und Benutzergruppen und setzen Sie Berechtigungen. Ändern Sie die Konfigurationsdatei nginx.conf und konfigurieren Sie den Hörport und den Domänennamen/die IP -Adresse. Starten Sie den Nginx -Dienst. Häufige Fehler müssen beachtet werden, z. B. Abhängigkeitsprobleme, Portkonflikte und Konfigurationsdateifehler. Die Leistungsoptimierung muss entsprechend der spezifischen Situation angepasst werden, z. B. das Einschalten des Cache und die Anpassung der Anzahl der Arbeitsprozesse.

Bei der Installation von PyTorch am CentOS -System müssen Sie die entsprechende Version sorgfältig auswählen und die folgenden Schlüsselfaktoren berücksichtigen: 1. Kompatibilität der Systemumgebung: Betriebssystem: Es wird empfohlen, CentOS7 oder höher zu verwenden. CUDA und CUDNN: Pytorch -Version und CUDA -Version sind eng miteinander verbunden. Beispielsweise erfordert Pytorch1.9.0 CUDA11.1, während Pytorch2.0.1 CUDA11.3 erfordert. Die Cudnn -Version muss auch mit der CUDA -Version übereinstimmen. Bestimmen Sie vor der Auswahl der Pytorch -Version unbedingt, dass kompatible CUDA- und CUDNN -Versionen installiert wurden. Python -Version: Pytorch Official Branch
