Inhaltsverzeichnis
性能对比" >性能对比
遍历结构体数组" >遍历结构体数组
结论" >结论
Heim Backend-Entwicklung Golang Umgang mit großen Arrays in Go: for-Range oder for-Schleife verwenden?

Umgang mit großen Arrays in Go: for-Range oder for-Schleife verwenden?

Jul 24, 2023 pm 02:47 PM
go for循环

Wir wissen, dass die Syntax von Go relativ prägnant ist. Es bietet keine C-ähnliche Unterstützung ; Randradius: 2px; Randfamilie: „Operator Mono“, Consolas, Monospace: rgba(14, 210, 247, 0,15);">while<span style="font-size: 15px;">while</span><span style="font-size: 15px;">do...while</span> 等循环控制语法,而仅保留了一种语句,即 for 循环。
for i := 0; i < n; i++ {
    ... ...
}
Nach dem Login kopieren

但是,经典的三段式循环语句,需要获取迭代对象的长度 n。鉴于此,为了更方便 Go 开发者对复合数据类型进行迭代,例如 array、slice、channel、map,Go 提供了 for 循环的变体,即 <span style="font-size: 15px;">for range</span></span>do...while</p>

und andere Schleifensteuerungssyntax, während nur eine Anweisung, die for-Schleife, beibehalten wird.

func main() {
    var a = [5]int{1, 2, 3, 4, 5}
    var r [5]int

    fmt.Println("original a =", a)

    for i, v := range a {
        if i == 0 {
            a[1] = 12
            a[2] = 13
        }
        r[i] = v
    }

    fmt.Println("after for range loop, r =", r)
    fmt.Println("after for range loop, a =", a)
}
Nach dem Login kopieren
Allerdings muss die klassische dreistufige Schleifenanweisung die Länge n des Iterationsobjekts erhalten. Um Go-Entwicklern die Iteration über zusammengesetzte Datentypen wie Array, Slice, Channel, Map zu erleichtern, stellt Go vor diesem Hintergrund eine Variante der for-Schleife bereit, nämlich

<span style="font-size: 15px;">for range</span>

Schleife.

Kopierproblem🎜🎜🎜🎜Bereich bringt Komfort, bringt aber auch einige Probleme für Go-Anfänger mit sich. Denn Benutzer müssen eines verstehen: Im for-Bereich nimmt nur eine Kopie des Objekts am Schleifenausdruck teil. 🎜🎜
original a = [1 2 3 4 5]
after for range loop, r = [1 12 13 4 5]
after for range loop, a = [1 12 13 4 5]
Nach dem Login kopieren
Nach dem Login kopieren
🎜🎜Glauben Sie, dass dieser Code die folgenden Ergebnisse ausgibt? 🎜🎜
original a = [1 2 3 4 5]
after for range loop, r = [1 12 13 4 5]
after for range loop, a = [1 12 13 4 5]
Nach dem Login kopieren
Nach dem Login kopieren

但是,实际输出是

original a = [1 2 3 4 5]
after for range loop, r = [1 2 3 4 5]
after for range loop, a = [1 12 13 4 5]
Nach dem Login kopieren

为什么会这样?原因是参与 for range 循环是 range 表达式的副本。也就是说,在上面的例子中,实际上参与循环的是 a 的副本,而不是真正的 a。

为了让大家更容易理解,我们把上面例子中的 for range 循环改写成等效的伪代码形式。

for i, v := range ac { //ac is a value copy of a
    if i == 0 {
        a[1] = 12
        a[2] = 13
    }
    r[i] = v
}
Nach dem Login kopieren

ac 是 Go 临时分配的连续字节序列,与 a 根本不是同一块内存空间。因此,无论 a 如何修改,它参与循环的副本 ac 仍然保持原始值,因此从 ac 中取出的 v 也依然是 a 的原始值,而不是修改后的值。

那么,问题来了,既然 for range 使用的是副本数据,那 for range 会比经典的 for 循环消耗更多的资源并且性能更差吗?

性能对比

基于副本复制问题,我们先使用基准示例来验证一下:对于大型数组,for range 是否一定比经典的 for 循环运行得慢?

package main

import "testing"

func BenchmarkClassicForLoopIntArray(b *testing.B) {
 b.ReportAllocs()
 var arr [100000]int
 for i := 0; i < b.N; i++ {
  for j := 0; j < len(arr); j++ {
   arr[j] = j
  }
 }
}

func BenchmarkForRangeIntArray(b *testing.B) {
 b.ReportAllocs()
 var arr [100000]int
 for i := 0; i < b.N; i++ {
  for j, v := range arr {
   arr[j] = j
   _ = v
  }
 }
}
Nach dem Login kopieren

在这个例子中,我们使用 for 循环和 for range 分别遍历一个包含 10 万个 int 类型元素的数组。让我们看看基准测试的结果

$ go test -bench . forRange1_test.go 
goos: darwin
goarch: amd64
cpu: Intel(R) Core(TM) i5-8279U CPU @ 2.40GHz
BenchmarkClassicForLoopIntArray-8          47404             25486 ns/op               0 B/op          0 allocs/op
BenchmarkForRangeIntArray-8                37142             31691 ns/op               0 B/op          0 allocs/op
PASS
ok      command-line-arguments  2.978s
Nach dem Login kopieren

从输出结果可以看出,for range 的确会稍劣于 for 循环,当然这其中包含了编译器级别优化的结果(通常是静态单赋值,或者 SSA 链接)。

让我们关闭优化开关,再次运行压力测试。

 $ go test -c -gcflags &#39;-N -l&#39; . -o forRange1.test
 $ ./forRange1.test -test.bench .
 goos: darwin
goarch: amd64
pkg: workspace/example/forRange
cpu: Intel(R) Core(TM) i5-8279U CPU @ 2.40GHz
BenchmarkClassicForLoopIntArray-8           6734            175319 ns/op               0 B/op          0 allocs/op
BenchmarkForRangeIntArray-8                 5178            242977 ns/op               0 B/op          0 allocs/op
PASS
Nach dem Login kopieren

当没有编译器优化时,两种循环的性能都明显下降, for range 下降得更为明显,性能也更加比经典 for 循环差。

遍历结构体数组

上述性能测试中,我们的遍历对象类型是 int 值的数组,如果我们将 int 元素改为结构体会怎么样?for 和 for range 循环各自表现又会如何?

package main

import "testing"

type U5 struct {
 a, b, c, d, e int
}
type U4 struct {
 a, b, c, d int
}
type U3 struct {
 b, c, d int
}
type U2 struct {
 c, d int
}
type U1 struct {
 d int
}

func BenchmarkClassicForLoopLargeStructArrayU5(b *testing.B) {
 b.ReportAllocs()
 var arr [100000]U5
 for i := 0; i < b.N; i++ {
  for j := 0; j < len(arr)-1; j++ {
   arr[j].d = j
  }
 }
}
func BenchmarkClassicForLoopLargeStructArrayU4(b *testing.B) {
 b.ReportAllocs()
 var arr [100000]U4
 for i := 0; i < b.N; i++ {
  for j := 0; j < len(arr)-1; j++ {
   arr[j].d = j
  }
 }
}
func BenchmarkClassicForLoopLargeStructArrayU3(b *testing.B) {
 b.ReportAllocs()
 var arr [100000]U3
 for i := 0; i < b.N; i++ {
  for j := 0; j < len(arr)-1; j++ {
   arr[j].d = j
  }
 }
}
func BenchmarkClassicForLoopLargeStructArrayU2(b *testing.B) {
 b.ReportAllocs()
 var arr [100000]U2
 for i := 0; i < b.N; i++ {
  for j := 0; j < len(arr)-1; j++ {
   arr[j].d = j
  }
 }
}

func BenchmarkClassicForLoopLargeStructArrayU1(b *testing.B) {
 b.ReportAllocs()
 var arr [100000]U1
 for i := 0; i < b.N; i++ {
  for j := 0; j < len(arr)-1; j++ {
   arr[j].d = j
  }
 }
}

func BenchmarkForRangeLargeStructArrayU5(b *testing.B) {
 b.ReportAllocs()
 var arr [100000]U5
 for i := 0; i < b.N; i++ {
  for j, v := range arr {
   arr[j].d = j
   _ = v
  }
 }
}
func BenchmarkForRangeLargeStructArrayU4(b *testing.B) {
 b.ReportAllocs()
 var arr [100000]U4
 for i := 0; i < b.N; i++ {
  for j, v := range arr {
   arr[j].d = j
   _ = v
  }
 }
}

func BenchmarkForRangeLargeStructArrayU3(b *testing.B) {
 b.ReportAllocs()
 var arr [100000]U3
 for i := 0; i < b.N; i++ {
  for j, v := range arr {
   arr[j].d = j
   _ = v
  }
 }
}
func BenchmarkForRangeLargeStructArrayU2(b *testing.B) {
 b.ReportAllocs()
 var arr [100000]U2
 for i := 0; i < b.N; i++ {
  for j, v := range arr {
   arr[j].d = j
   _ = v
  }
 }
}
func BenchmarkForRangeLargeStructArrayU1(b *testing.B) {
 b.ReportAllocs()
 var arr [100000]U1
 for i := 0; i < b.N; i++ {
  for j, v := range arr {
   arr[j].d = j
   _ = v
  }
 }
}
Nach dem Login kopieren

在这个例子中,我们定义了 5 种类型的结构体:U1~U5,它们的区别在于包含的 int 类型字段的数量。

性能测试结果如下

 $ go test -bench . forRange2_test.go
goos: darwin
goarch: amd64
cpu: Intel(R) Core(TM) i5-8279U CPU @ 2.40GHz
BenchmarkClassicForLoopLargeStructArrayU5-8        44540             26227 ns/op               0 B/op          0 allocs/op
BenchmarkClassicForLoopLargeStructArrayU4-8        45906             26312 ns/op               0 B/op          0 allocs/op
BenchmarkClassicForLoopLargeStructArrayU3-8        43315             27400 ns/op               0 B/op          0 allocs/op
BenchmarkClassicForLoopLargeStructArrayU2-8        44605             26313 ns/op               0 B/op          0 allocs/op
BenchmarkClassicForLoopLargeStructArrayU1-8        45752             26110 ns/op               0 B/op          0 allocs/op
BenchmarkForRangeLargeStructArrayU5-8               3072            388651 ns/op               0 B/op          0 allocs/op
BenchmarkForRangeLargeStructArrayU4-8               4605            261329 ns/op               0 B/op          0 allocs/op
BenchmarkForRangeLargeStructArrayU3-8               5857            182565 ns/op               0 B/op          0 allocs/op
BenchmarkForRangeLargeStructArrayU2-8              10000            108391 ns/op               0 B/op          0 allocs/op
BenchmarkForRangeLargeStructArrayU1-8              36333             32346 ns/op               0 B/op          0 allocs/op
PASS
ok      command-line-arguments  16.160s
Nach dem Login kopieren

我们看到一个现象:不管是什么类型的结构体元素数组,经典的 for 循环遍历的性能比较一致,但是 for range 的遍历性能会随着结构字段数量的增加而降低。

带着疑惑,发现了一个与这个问题相关的 issue:cmd/compile: optimize large structs:https://github.com/golang/go/issues/24416。这个 issue 大致是说:如果一个结构体类型有超过一定数量的字段(或一些其他条件),就会将该类型视为 unSSAable。如果 SSA 不可行,那么就无法通过 SSA 优化,这也是造成上述基准测试结果的重要原因。

结论

对于遍历大数组而言, for 循环能比 for range 循环更高效与稳定,这一点在数组元素为结构体类型更加明显。

另外,由于在 Go 中切片的底层都是通过数组来存储数据,尽管有 for range 的副本复制问题,但是切片副本指向的底层数组与原切片是一致的。这意味着,当我们将数组通过切片代替后,不管是通过 for range 或者 for 循环均能得到一致的稳定的遍历性能。

Das obige ist der detaillierte Inhalt vonUmgang mit großen Arrays in Go: for-Range oder for-Schleife verwenden?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

R.E.P.O. Energiekristalle erklärten und was sie tun (gelber Kristall)
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Beste grafische Einstellungen
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. So reparieren Sie Audio, wenn Sie niemanden hören können
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Wie man alles in Myrise freischaltet
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Vertiefendes Verständnis des Golang-Funktionslebenszyklus und des Variablenumfangs Vertiefendes Verständnis des Golang-Funktionslebenszyklus und des Variablenumfangs Apr 19, 2024 am 11:42 AM

In Go umfasst der Funktionslebenszyklus Definition, Laden, Verknüpfen, Initialisieren, Aufrufen und Zurückgeben; der Variablenbereich ist in Funktionsebene und Blockebene unterteilt. Variablen innerhalb einer Funktion sind intern sichtbar, während Variablen innerhalb eines Blocks nur innerhalb des Blocks sichtbar sind .

Wie sende ich Go WebSocket-Nachrichten? Wie sende ich Go WebSocket-Nachrichten? Jun 03, 2024 pm 04:53 PM

In Go können WebSocket-Nachrichten mit dem Paket gorilla/websocket gesendet werden. Konkrete Schritte: Stellen Sie eine WebSocket-Verbindung her. Senden Sie eine Textnachricht: Rufen Sie WriteMessage(websocket.TextMessage,[]byte("message")) auf. Senden Sie eine binäre Nachricht: Rufen Sie WriteMessage(websocket.BinaryMessage,[]byte{1,2,3}) auf.

Wie kann ich Zeitstempel mithilfe regulärer Ausdrücke in Go abgleichen? Wie kann ich Zeitstempel mithilfe regulärer Ausdrücke in Go abgleichen? Jun 02, 2024 am 09:00 AM

In Go können Sie reguläre Ausdrücke verwenden, um Zeitstempel abzugleichen: Kompilieren Sie eine Zeichenfolge mit regulären Ausdrücken, z. B. die, die zum Abgleich von ISO8601-Zeitstempeln verwendet wird: ^\d{4}-\d{2}-\d{2}T \d{ 2}:\d{2}:\d{2}(\.\d+)?(Z|[+-][0-9]{2}:[0-9]{2})$ . Verwenden Sie die Funktion regexp.MatchString, um zu überprüfen, ob eine Zeichenfolge mit einem regulären Ausdruck übereinstimmt.

Der Unterschied zwischen Golang und Go-Sprache Der Unterschied zwischen Golang und Go-Sprache May 31, 2024 pm 08:10 PM

Go und die Go-Sprache sind unterschiedliche Einheiten mit unterschiedlichen Eigenschaften. Go (auch bekannt als Golang) ist bekannt für seine Parallelität, schnelle Kompilierungsgeschwindigkeit, Speicherverwaltung und plattformübergreifende Vorteile. Zu den Nachteilen der Go-Sprache gehören ein weniger umfangreiches Ökosystem als andere Sprachen, eine strengere Syntax und das Fehlen dynamischer Typisierung.

Wie vermeidet man Speicherlecks bei der technischen Leistungsoptimierung von Golang? Wie vermeidet man Speicherlecks bei der technischen Leistungsoptimierung von Golang? Jun 04, 2024 pm 12:27 PM

Speicherlecks können dazu führen, dass der Speicher des Go-Programms kontinuierlich zunimmt, indem: Ressourcen geschlossen werden, die nicht mehr verwendet werden, wie z. B. Dateien, Netzwerkverbindungen und Datenbankverbindungen. Verwenden Sie schwache Referenzen, um Speicherlecks zu verhindern, und zielen Sie auf Objekte für die Garbage Collection ab, wenn sie nicht mehr stark referenziert sind. Bei Verwendung von Go-Coroutine wird der Speicher des Coroutine-Stapels beim Beenden automatisch freigegeben, um Speicherverluste zu vermeiden.

Wie kann ich die Golang-Funktionsdokumentation in der IDE anzeigen? Wie kann ich die Golang-Funktionsdokumentation in der IDE anzeigen? Apr 18, 2024 pm 03:06 PM

Go-Funktionsdokumentation mit der IDE anzeigen: Bewegen Sie den Cursor über den Funktionsnamen. Drücken Sie den Hotkey (GoLand: Strg+Q; VSCode: Nach der Installation von GoExtensionPack F1 und wählen Sie „Go:ShowDocumentation“).

Wie verwende ich den Fehler-Wrapper von Golang? Wie verwende ich den Fehler-Wrapper von Golang? Jun 03, 2024 pm 04:08 PM

In Golang können Sie mit Fehler-Wrappern neue Fehler erstellen, indem Sie Kontextinformationen an den ursprünglichen Fehler anhängen. Dies kann verwendet werden, um die von verschiedenen Bibliotheken oder Komponenten ausgelösten Fehlertypen zu vereinheitlichen und so das Debuggen und die Fehlerbehandlung zu vereinfachen. Die Schritte lauten wie folgt: Verwenden Sie die Funktion „errors.Wrap“, um die ursprünglichen Fehler in neue Fehler umzuwandeln. Der neue Fehler enthält Kontextinformationen zum ursprünglichen Fehler. Verwenden Sie fmt.Printf, um umschlossene Fehler auszugeben und so mehr Kontext und Umsetzbarkeit bereitzustellen. Wenn Sie verschiedene Fehlertypen behandeln, verwenden Sie die Funktion „errors.Wrap“, um die Fehlertypen zu vereinheitlichen.

Eine Anleitung zum Unit-Testen gleichzeitiger Go-Funktionen Eine Anleitung zum Unit-Testen gleichzeitiger Go-Funktionen May 03, 2024 am 10:54 AM

Das Testen gleichzeitiger Funktionen in Einheiten ist von entscheidender Bedeutung, da dies dazu beiträgt, ihr korrektes Verhalten in einer gleichzeitigen Umgebung sicherzustellen. Beim Testen gleichzeitiger Funktionen müssen grundlegende Prinzipien wie gegenseitiger Ausschluss, Synchronisation und Isolation berücksichtigt werden. Gleichzeitige Funktionen können Unit-Tests unterzogen werden, indem Rennbedingungen simuliert, getestet und Ergebnisse überprüft werden.

See all articles