


Ein Artikel, der Ihnen hilft, die verteilte Prozessschnittstelle von Python zu verstehen
1. Einführung
Unter Thread und Process sollte Process bevorzugt werden, da Process stabiler ist und Process auf mehrere Maschinen verteilt werden kann, während Thread höchstens auf mehrere CPUs derselben Maschine verteilt werden kann .
Das Multiprocessing-Modul von Python unterstützt nicht nur mehrere Prozesse, sondern das Manager-Submodul unterstützt auch die Verteilung mehrerer Prozesse auf mehrere Maschinen. Sie können einen Dienstprozess als Planer schreiben, um Aufgaben auf mehrere andere Prozesse zu verteilen und sich für die Verwaltung auf die Netzwerkkommunikation zu verlassen.
2. Fallanalyse
Wenn Sie ein Crawler-Programm erstellen, erfassen Sie alle Bilder einer Website. Wenn Sie mehrere Prozesse verwenden, ist normalerweise ein Prozess dafür verantwortlich, die Linkadresse des Bildes zu erfassen und die Linkadresse einzufügen In der Warteschlange ist ein anderer Prozess dafür verantwortlich, die Linkadresse aus der Warteschlange abzurufen, herunterzuladen und lokal zu speichern.
Wie implementiert man es mithilfe eines verteilten Prozesses?
Der Prozess auf einem Computer ist für das Erfassen der Linkadresse verantwortlich, und die Prozesse auf anderen Computern sind für deren Speicherung verantwortlich. Das Hauptproblem besteht darin, die Warteschlange dem Netzwerk zugänglich zu machen, damit andere Maschinenprozesse darauf zugreifen können. Dieser Prozess kann als Vernetzung lokaler Warteschlangen bezeichnet werden.
Beispiel:
1.py
from multiprocessing.managers import BaseManager from multiprocessing import freeze_support, Queue # 任务个数 task_number = 10 # 收发队列 task_quue = Queue(task_number) result_queue = Queue(task_number) def get_task(): return task_quue def get_result(): return result_queue # 创建类似的queueManager class QueueManager(BaseManager): pass def win_run(): # 注册在网络上,callable 关联了Queue 对象 # 将Queue对象在网络中暴露 # window下绑定调用接口不能直接使用lambda,所以只能先定义函数再绑定 QueueManager.register('get_task_queue', callable=get_task) QueueManager.register('get_result_queue', callable=get_result) # 绑定端口和设置验证口令 manager = QueueManager(address=('127.0.0.1', 8001), authkey='qiye'.encode()) # 启动管理,监听信息通道 manager.start() try: # 通过网络获取任务队列和结果队列 task = manager.get_task_queue() result = manager.get_result_queue() # 添加任务 for url in ["ImageUrl_" + str(i) for i in range(10)]: print('url is %s' % url) task.put(url) print('try get result') for i in range(10): print('result is %s' % result.get(timeout=10)) except: print('Manager error') finally: manager.shutdown() if __name__ == '__main__': freeze_support() win_run()
Der Port und das Bestätigungskennwort sollten genau die gleichen sein wie im Serverprozess. Rufen Sie die Warteschlange vom Netzwerk ab, führen Sie die Aufgabe aus aus der Aufgabenwarteschlange und schreiben Sie das Ergebnis in die Ergebniswarteschlange
2.py
#coding:utf-8 import time from multiprocessing.managers import BaseManager # 创建类似的Manager: class Manager(BaseManager): pass #使用QueueManager注册获取Queue的方法名称 Manager.register('get_task_queue') Manager.register('get_result_queue') #连接到服务器: server_addr = '127.0.0.1' print('Connect to server %s...' % server_addr) # 端口和验证口令注意保持与服务进程设置的完全一致: m = Manager(address=(server_addr, 8001), authkey='qiye') # 从网络连接: m.connect() #获取Queue的对象: task = m.get_task_queue() result = m.get_result_queue() #从task队列取任务,并把结果写入result队列: while(not task.empty()): image_url = task.get(True,timeout=5) print('run task download %s...' % image_url) time.sleep(1) result.put('%s--->success'%image_url) #结束: print('worker exit.')
Der Aufgabenprozess muss über das Netzwerk eine Verbindung zum Dienstprozess herstellen, daher muss die IP des Dienstprozesses angegeben werden.
Die laufenden Ergebnisse sind wie folgt:
Erhalten Sie die Bildadresse und übergeben Sie die Adresse an 2.py.
Empfangen Sie die von 1.py übergebene Adresse, laden Sie das Bild herunter und die Konsole zeigt die Crawling-Ergebnisse an.
3. Zusammenfassung
Die verteilte Prozessschnittstelle von Python ist einfach und gut gekapselt. Sie eignet sich für Umgebungen, in denen schwere Aufgaben auf mehrere Maschinen verteilt werden müssen . Indem erklärt wird, dass die Rolle der Warteschlange darin besteht, Aufgaben zu liefern und Ergebnisse zu erhalten.
Das obige ist der detaillierte Inhalt vonEin Artikel, der Ihnen hilft, die verteilte Prozessschnittstelle von Python zu verstehen. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen

PHP ist hauptsächlich prozedurale Programmierung, unterstützt aber auch die objektorientierte Programmierung (OOP). Python unterstützt eine Vielzahl von Paradigmen, einschließlich OOP, funktionaler und prozeduraler Programmierung. PHP ist für die Webentwicklung geeignet, und Python eignet sich für eine Vielzahl von Anwendungen wie Datenanalyse und maschinelles Lernen.

PHP eignet sich für Webentwicklung und schnelles Prototyping, und Python eignet sich für Datenwissenschaft und maschinelles Lernen. 1.PHP wird für die dynamische Webentwicklung verwendet, mit einfacher Syntax und für schnelle Entwicklung geeignet. 2. Python hat eine kurze Syntax, ist für mehrere Felder geeignet und ein starkes Bibliotheksökosystem.

Python eignet sich besser für Anfänger mit einer reibungslosen Lernkurve und einer kurzen Syntax. JavaScript ist für die Front-End-Entwicklung mit einer steilen Lernkurve und einer flexiblen Syntax geeignet. 1. Python-Syntax ist intuitiv und für die Entwicklung von Datenwissenschaften und Back-End-Entwicklung geeignet. 2. JavaScript ist flexibel und in Front-End- und serverseitiger Programmierung weit verbreitet.

VS -Code kann unter Windows 8 ausgeführt werden, aber die Erfahrung ist möglicherweise nicht großartig. Stellen Sie zunächst sicher, dass das System auf den neuesten Patch aktualisiert wurde, und laden Sie dann das VS -Code -Installationspaket herunter, das der Systemarchitektur entspricht und sie wie aufgefordert installiert. Beachten Sie nach der Installation, dass einige Erweiterungen möglicherweise mit Windows 8 nicht kompatibel sind und nach alternativen Erweiterungen suchen oder neuere Windows -Systeme in einer virtuellen Maschine verwenden müssen. Installieren Sie die erforderlichen Erweiterungen, um zu überprüfen, ob sie ordnungsgemäß funktionieren. Obwohl VS -Code unter Windows 8 möglich ist, wird empfohlen, auf ein neueres Windows -System zu upgraden, um eine bessere Entwicklungserfahrung und Sicherheit zu erzielen.

PHP entstand 1994 und wurde von Rasmuslerdorf entwickelt. Es wurde ursprünglich verwendet, um Website-Besucher zu verfolgen und sich nach und nach zu einer serverseitigen Skriptsprache entwickelt und in der Webentwicklung häufig verwendet. Python wurde Ende der 1980er Jahre von Guidovan Rossum entwickelt und erstmals 1991 veröffentlicht. Es betont die Lesbarkeit und Einfachheit der Code und ist für wissenschaftliche Computer, Datenanalysen und andere Bereiche geeignet.

Im VS -Code können Sie das Programm im Terminal in den folgenden Schritten ausführen: Erstellen Sie den Code und öffnen Sie das integrierte Terminal, um sicherzustellen, dass das Codeverzeichnis mit dem Terminal Working -Verzeichnis übereinstimmt. Wählen Sie den Befehl aus, den Befehl ausführen, gemäß der Programmiersprache (z. B. Pythons Python your_file_name.py), um zu überprüfen, ob er erfolgreich ausgeführt wird, und Fehler auflösen. Verwenden Sie den Debugger, um die Debugging -Effizienz zu verbessern.

VS -Code -Erweiterungen stellen böswillige Risiken dar, wie das Verstecken von böswilligem Code, das Ausbeutetieren von Schwachstellen und das Masturbieren als legitime Erweiterungen. Zu den Methoden zur Identifizierung böswilliger Erweiterungen gehören: Überprüfung von Verlegern, Lesen von Kommentaren, Überprüfung von Code und Installation mit Vorsicht. Zu den Sicherheitsmaßnahmen gehören auch: Sicherheitsbewusstsein, gute Gewohnheiten, regelmäßige Updates und Antivirensoftware.

VS -Code kann zum Schreiben von Python verwendet werden und bietet viele Funktionen, die es zu einem idealen Werkzeug für die Entwicklung von Python -Anwendungen machen. Sie ermöglichen es Benutzern: Installation von Python -Erweiterungen, um Funktionen wie Code -Abschluss, Syntax -Hervorhebung und Debugging zu erhalten. Verwenden Sie den Debugger, um Code Schritt für Schritt zu verfolgen, Fehler zu finden und zu beheben. Integrieren Sie Git für die Versionskontrolle. Verwenden Sie Tools für die Codeformatierung, um die Codekonsistenz aufrechtzuerhalten. Verwenden Sie das Lining -Tool, um potenzielle Probleme im Voraus zu erkennen.
