


Ein Artikel, der Sie über Python-Zugriffsbeschränkungen informiert
1. Einführung
Innerhalb einer Klasse können Eigenschaften und Methoden vorhanden sein, und externer Code kann Daten manipulieren, indem er Instanzvariablenmethoden direkt aufruft und so die komplexe interne Logik verbirgt.
2. Fallanalyse
Nach der Definition der Teacher-Klasse zu urteilen, kann externer Code den Namen und die Bewertungsattribute einer Instanz immer noch frei ändern.
class Teacher(object): def __init__(self, name, score): self.name = name self.score = score def print_score(self): print('%s: %s' % (self.name, self.score)) def get_grade(self): if self.score >= 90: return 'A' elif self.score >= 60: return 'B' else: return 'C' bart = Teacher('Bart Simpson', 98) lisa = Teacher('Lisa Simpson', 87) bart.score = 59 print(bart.score) print('bart.score =', bart.score)
Laufergebnis:
Wenn Sie verhindern möchten, dass von außen auf interne Attribute zugegriffen wird, können Sie vor dem Namen des Attributs zwei Unterstriche hinzufügen.
Wenn in Python der Variablenname einer Instanz mit beginnt, wird sie zu einer privaten Variablen (privat), auf die nur intern und nicht extern zugegriffen werden kann :
class Teacher(object): def __init__(self, name, score): self.__name = name self.__score = score def print_score(self): print('%s: %s' % (self.__name, self.__score))
改完后,对于外部代码来说,没什么变动,但是已经无法从外部访问实例变量.name和实例变量.score了:
bart = Teacher('Bart Simpson', 98) print(bart.__name)
注:
就确保了外部代码不能随意修改对象内部的状态,这样通过访问限制的保护,代码更加健壮。
但是如果外部代码要获取name和score怎么办?可以给Teacher类增加get_name和get_score这样的方法:
class Teacher(object): def get_name(self): return self.__name def get_score(self): return self.__score
如果又要允许外部代码修改score怎么办?可以再给Teacher类增加set_score方法。
class Teacher(object): def set_score(self, score): self.__score = score
原先那种直接通过bart.score = 59也可以修改啊,为什么要定义一个方法大费周折?因为在方法中,可以对参数做检查,避免传入无效的参数:
class Teacher(object): def set_score(self, score): if 0 <= score <= 100: self.__score = score else: raise ValueError('bad score')
在Python中,变量名类似xxx的,也就是以双下划线开头,并且以双下划线结尾的,是特殊变量,特殊变量是可以直接访问的,不是private变量,所以,不能用name、score这样的变量名。
Teacher会看到以一个下划线开头的实例变量名。
比如_name,这样的实例变量外部是可以访问的,但是,按照约定俗成的规定,当Teacher看到这样的变量时。
print(bart._Teacher__name)
代码解析:
双下划线开头的实例变量是不是一定不能从外部访问呢?其实也不是。不能直接访问name是因为Python解释器对外把name变量改成了_Teacher_name。
所以,仍然可以通过_Teacher_name来访问__name变量。
“虽然我可以被访问,但是,请把我视为私有变量,不要随意访问”。
3. Zusammenfassung
Dieser Artikel basiert auf Python-Grundlagen. Einführung von Zugriffsbeschränkungen für Variablen in Klassen. Durch Fallanalysen bieten wir wirksame Lösungen für die Punkte, die in der praktischen Anwendung Aufmerksamkeit erfordern, und für die aufgetretenen Probleme.
Das obige ist der detaillierte Inhalt vonEin Artikel, der Sie über Python-Zugriffsbeschränkungen informiert. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



Hadidb: Eine leichte, hochrangige skalierbare Python-Datenbank Hadidb (HadIDB) ist eine leichte Datenbank in Python mit einem hohen Maß an Skalierbarkeit. Installieren Sie HadIDB mithilfe der PIP -Installation: PipinstallHadIDB -Benutzerverwaltung erstellen Benutzer: createUser (), um einen neuen Benutzer zu erstellen. Die Authentication () -Methode authentifiziert die Identität des Benutzers. fromHadidb.operationImportUseruser_obj = user ("admin", "admin") user_obj.

Python wird in den Bereichen Webentwicklung, Datenwissenschaft, maschinelles Lernen, Automatisierung und Skripten häufig verwendet. 1) In der Webentwicklung vereinfachen Django und Flask Frameworks den Entwicklungsprozess. 2) In den Bereichen Datenwissenschaft und maschinelles Lernen bieten Numpy-, Pandas-, Scikit-Learn- und TensorFlow-Bibliotheken eine starke Unterstützung. 3) In Bezug auf Automatisierung und Skript ist Python für Aufgaben wie automatisiertes Test und Systemmanagement geeignet.

Sie können grundlegende Programmierkonzepte und Fähigkeiten von Python innerhalb von 2 Stunden lernen. 1. Lernen Sie Variablen und Datentypen, 2. Master Control Flow (bedingte Anweisungen und Schleifen), 3.. Verstehen Sie die Definition und Verwendung von Funktionen, 4. Beginnen Sie schnell mit der Python -Programmierung durch einfache Beispiele und Code -Snippets.

Es ist unmöglich, das MongoDB -Passwort direkt über Navicat anzuzeigen, da es als Hash -Werte gespeichert ist. So rufen Sie verlorene Passwörter ab: 1. Passwörter zurücksetzen; 2. Überprüfen Sie die Konfigurationsdateien (können Hash -Werte enthalten). 3. Überprüfen Sie Codes (May Hardcode -Passwörter).

Als Datenprofi müssen Sie große Datenmengen aus verschiedenen Quellen verarbeiten. Dies kann Herausforderungen für das Datenmanagement und die Analyse darstellen. Glücklicherweise können zwei AWS -Dienste helfen: AWS -Kleber und Amazon Athena.

Die MySQL-Datenbankleistung Optimierungshandbuch In ressourcenintensiven Anwendungen spielt die MySQL-Datenbank eine entscheidende Rolle und ist für die Verwaltung massiver Transaktionen verantwortlich. Mit der Erweiterung der Anwendung werden jedoch die Datenbankleistung Engpässe häufig zu einer Einschränkung. In diesem Artikel werden eine Reihe effektiver Strategien zur Leistungsoptimierung von MySQL -Leistung untersucht, um sicherzustellen, dass Ihre Anwendung unter hohen Lasten effizient und reaktionsschnell bleibt. Wir werden tatsächliche Fälle kombinieren, um eingehende Schlüsseltechnologien wie Indexierung, Abfrageoptimierung, Datenbankdesign und Caching zu erklären. 1. Das Design der Datenbankarchitektur und die optimierte Datenbankarchitektur sind der Eckpfeiler der MySQL -Leistungsoptimierung. Hier sind einige Kernprinzipien: Die Auswahl des richtigen Datentyps und die Auswahl des kleinsten Datentyps, der den Anforderungen entspricht, kann nicht nur Speicherplatz speichern, sondern auch die Datenverarbeitungsgeschwindigkeit verbessern.

Zu den Schritten zum Starten eines Redis -Servers gehören: Installieren von Redis gemäß dem Betriebssystem. Starten Sie den Redis-Dienst über Redis-Server (Linux/macOS) oder redis-server.exe (Windows). Verwenden Sie den Befehl redis-cli ping (linux/macOS) oder redis-cli.exe ping (Windows), um den Dienststatus zu überprüfen. Verwenden Sie einen Redis-Client wie Redis-Cli, Python oder Node.js, um auf den Server zuzugreifen.

Um eine Warteschlange aus Redis zu lesen, müssen Sie den Warteschlangenname erhalten, die Elemente mit dem Befehl LPOP lesen und die leere Warteschlange verarbeiten. Die spezifischen Schritte sind wie folgt: Holen Sie sich den Warteschlangenname: Nennen Sie ihn mit dem Präfix von "Warteschlange:" wie "Warteschlangen: My-Queue". Verwenden Sie den Befehl LPOP: Wischen Sie das Element aus dem Kopf der Warteschlange aus und geben Sie seinen Wert zurück, z. B. die LPOP-Warteschlange: my-queue. Verarbeitung leerer Warteschlangen: Wenn die Warteschlange leer ist, gibt LPOP NIL zurück, und Sie können überprüfen, ob die Warteschlange existiert, bevor Sie das Element lesen.
