


So verwenden Sie Modelle des maschinellen Lernens für die Datenvorhersage in FastAPI
So verwenden Sie Modelle für maschinelles Lernen zur Datenvorhersage in FastAPI
Einführung:
Mit der Entwicklung des maschinellen Lernens erfordern immer mehr Anwendungsszenarien die Integration von Modellen für maschinelles Lernen in tatsächliche Systeme. FastAPI ist ein leistungsstarkes Python-Webframework, das auf einem asynchronen Programmierframework basiert. Es bietet eine einfache und benutzerfreundliche API-Entwicklungsmethode und eignet sich sehr gut zum Erstellen von Vorhersagediensten für maschinelles Lernen. In diesem Artikel wird die Verwendung von Modellen des maschinellen Lernens für die Datenvorhersage in FastAPI vorgestellt und relevante Codebeispiele bereitgestellt.
Teil Eins: Vorbereitung
Bevor wir beginnen, müssen wir einige Vorbereitungen abschließen.
- Notwendige Bibliotheken installieren
Zuerst müssen wir einige notwendige Bibliotheken installieren. Mit dem Befehl pip können Sie Bibliotheken wie FastAPI, uvicorn und scikit-learn installieren.
pip install fastapi pip install uvicorn pip install scikit-learn
- Bereiten Sie das Modell für maschinelles Lernen vor
Als nächstes müssen wir ein trainiertes Modell für maschinelles Lernen vorbereiten. In diesem Artikel verwenden wir als Beispiel ein einfaches lineares Regressionsmodell. Mithilfe der scikit-learn-Bibliothek können Modelle erstellt und trainiert werden.
from sklearn.linear_model import LinearRegression import numpy as np # 构建模型 model = LinearRegression() # 准备训练数据 X_train = np.array(...).reshape(-1, 1) # 输入特征 y_train = np.array(...) # 目标变量 # 训练模型 model.fit(X_train, y_train)
Teil 2: Erstellen der FastAPI-Anwendung
Nachdem die Vorbereitungen abgeschlossen sind, können wir mit dem Erstellen der FastAPI-Anwendung beginnen.
- Importieren Sie die erforderlichen Bibliotheken.
Zuerst müssen wir einige erforderliche Bibliotheken importieren, darunter FastAPI, Uvicorn und das gerade trainierte Modell.
from fastapi import FastAPI from pydantic import BaseModel # 导入模型 from sklearn.linear_model import LinearRegression
- Definieren Sie das Datenmodell für Eingabe und Ausgabe.
Als nächstes müssen wir das Datenmodell für Eingabe und Ausgabe definieren. In diesem Artikel sind die Eingabedaten eine Gleitkommazahl und die Ausgabedaten eine Gleitkommazahl.
class InputData(BaseModel): input_value: float class OutputData(BaseModel): output_value: float
- FastAPI-Anwendungsinstanz erstellen
Dann können wir eine Instanz von FastAPI erstellen.
app = FastAPI()
- Definieren Sie die Route für die Datenvorhersage.
Als nächstes können wir eine Route definieren, um Anfragen für die Datenvorhersage zu bearbeiten. Wir werden die MethodePOST
verwenden, um die Datenvorhersageanfrage zu verarbeiten undInputData
als Eingabedaten der Anfrage verwenden.POST
方法来处理数据预测请求,并将InputData
作为请求的输入数据。
@app.post('/predict') async def predict(input_data: InputData): # 调用模型进行预测 input_value = input_data.input_value output_value = model.predict([[input_value]]) # 构造输出数据 output_data = OutputData(output_value=output_value[0]) return output_data
第三部分:运行FastAPI应用
在完成FastAPI应用的构建后,我们可以运行应用,并测试数据预测的功能。
- 运行FastAPI应用
在命令行中运行以下命令,启动FastAPI应用。
uvicorn main:app --reload
- 发起数据预测请求
使用工具,如Postman,发送一个POST
请求到http://localhost:8000/predict
,并在请求体中传递一个input_value
{ "input_value": 5.0 }
Nach Abschluss der Erstellung der FastAPI-Anwendung können wir die Anwendung ausführen und die Datenvorhersagefunktion testen.
- Führen Sie die FastAPI-Anwendung aus.
Führen Sie den folgenden Befehl in der Befehlszeile aus, um die FastAPI-Anwendung zu starten.
{ "output_value": 10.0 }
Initiieren Sie eine Datenvorhersageanfrage.
POST
-Anfrage an http://localhost:8000/predict
zu senden und einzuschließen Geben Sie im Anforderungshauptteil einen input_value
-Parameter ein. Wenn Sie beispielsweise den folgenden Anfragetext senden:
from fastapi import FastAPI from pydantic import BaseModel from sklearn.linear_model import LinearRegression import numpy as np # 创建模型和训练数据 model = LinearRegression() X_train = np.array([1, 2, 3, 4, 5]).reshape(-1, 1) y_train = np.array([2, 4, 6, 8, 10]) model.fit(X_train, y_train) # 定义输入输出数据模型 class InputData(BaseModel): input_value: float class OutputData(BaseModel): output_value: float # 创建FastAPI应用实例 app = FastAPI() # 定义数据预测的路由 @app.post('/predict') async def predict(input_data: InputData): input_value = input_data.input_value output_value = model.predict([[input_value]]) output_data = OutputData(output_value=output_value[0]) return output_data
Das obige ist der detaillierte Inhalt vonSo verwenden Sie Modelle des maschinellen Lernens für die Datenvorhersage in FastAPI. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



Bei der Bildanmerkung handelt es sich um das Verknüpfen von Beschriftungen oder beschreibenden Informationen mit Bildern, um dem Bildinhalt eine tiefere Bedeutung und Erklärung zu verleihen. Dieser Prozess ist entscheidend für maschinelles Lernen, das dabei hilft, Sehmodelle zu trainieren, um einzelne Elemente in Bildern genauer zu identifizieren. Durch das Hinzufügen von Anmerkungen zu Bildern kann der Computer die Semantik und den Kontext hinter den Bildern verstehen und so den Bildinhalt besser verstehen und analysieren. Die Bildanmerkung hat ein breites Anwendungsspektrum und deckt viele Bereiche ab, z. B. Computer Vision, Verarbeitung natürlicher Sprache und Diagramm-Vision-Modelle. Sie verfügt über ein breites Anwendungsspektrum, z. B. zur Unterstützung von Fahrzeugen bei der Identifizierung von Hindernissen auf der Straße und bei der Erkennung und Diagnose von Krankheiten durch medizinische Bilderkennung. In diesem Artikel werden hauptsächlich einige bessere Open-Source- und kostenlose Bildanmerkungstools empfohlen. 1.Makesens

In den Bereichen maschinelles Lernen und Datenwissenschaft stand die Interpretierbarkeit von Modellen schon immer im Fokus von Forschern und Praktikern. Mit der weit verbreiteten Anwendung komplexer Modelle wie Deep Learning und Ensemble-Methoden ist das Verständnis des Entscheidungsprozesses des Modells besonders wichtig geworden. Explainable AI|XAI trägt dazu bei, Vertrauen in maschinelle Lernmodelle aufzubauen, indem es die Transparenz des Modells erhöht. Eine Verbesserung der Modelltransparenz kann durch Methoden wie den weit verbreiteten Einsatz mehrerer komplexer Modelle sowie der Entscheidungsprozesse zur Erläuterung der Modelle erreicht werden. Zu diesen Methoden gehören die Analyse der Merkmalsbedeutung, die Schätzung des Modellvorhersageintervalls, lokale Interpretierbarkeitsalgorithmen usw. Die Merkmalswichtigkeitsanalyse kann den Entscheidungsprozess des Modells erklären, indem sie den Grad des Einflusses des Modells auf die Eingabemerkmale bewertet. Schätzung des Modellvorhersageintervalls

In diesem Artikel wird vorgestellt, wie Überanpassung und Unteranpassung in Modellen für maschinelles Lernen mithilfe von Lernkurven effektiv identifiziert werden können. Unteranpassung und Überanpassung 1. Überanpassung Wenn ein Modell mit den Daten übertrainiert ist, sodass es daraus Rauschen lernt, spricht man von einer Überanpassung des Modells. Ein überangepasstes Modell lernt jedes Beispiel so perfekt, dass es ein unsichtbares/neues Beispiel falsch klassifiziert. Für ein überangepasstes Modell erhalten wir einen perfekten/nahezu perfekten Trainingssatzwert und einen schrecklichen Validierungssatz-/Testwert. Leicht geändert: „Ursache der Überanpassung: Verwenden Sie ein komplexes Modell, um ein einfaches Problem zu lösen und Rauschen aus den Daten zu extrahieren. Weil ein kleiner Datensatz als Trainingssatz möglicherweise nicht die korrekte Darstellung aller Daten darstellt. 2. Unteranpassung Heru.“

Laienhaft ausgedrückt ist ein Modell für maschinelles Lernen eine mathematische Funktion, die Eingabedaten einer vorhergesagten Ausgabe zuordnet. Genauer gesagt ist ein Modell für maschinelles Lernen eine mathematische Funktion, die Modellparameter anpasst, indem sie aus Trainingsdaten lernt, um den Fehler zwischen der vorhergesagten Ausgabe und der wahren Bezeichnung zu minimieren. Beim maschinellen Lernen gibt es viele Modelle, z. B. logistische Regressionsmodelle, Entscheidungsbaummodelle, Support-Vektor-Maschinenmodelle usw. Jedes Modell verfügt über seine anwendbaren Datentypen und Problemtypen. Gleichzeitig gibt es viele Gemeinsamkeiten zwischen verschiedenen Modellen oder es gibt einen verborgenen Weg für die Modellentwicklung. Am Beispiel des konnektionistischen Perzeptrons können wir es durch Erhöhen der Anzahl verborgener Schichten des Perzeptrons in ein tiefes neuronales Netzwerk umwandeln. Wenn dem Perzeptron eine Kernelfunktion hinzugefügt wird, kann es in eine SVM umgewandelt werden. Dieses hier

In den 1950er Jahren wurde die künstliche Intelligenz (KI) geboren. Damals entdeckten Forscher, dass Maschinen menschenähnliche Aufgaben wie das Denken ausführen können. Später, in den 1960er Jahren, finanzierte das US-Verteidigungsministerium künstliche Intelligenz und richtete Labore für die weitere Entwicklung ein. Forscher finden Anwendungen für künstliche Intelligenz in vielen Bereichen, etwa bei der Erforschung des Weltraums und beim Überleben in extremen Umgebungen. Unter Weltraumforschung versteht man die Erforschung des Universums, das das gesamte Universum außerhalb der Erde umfasst. Der Weltraum wird als extreme Umgebung eingestuft, da sich seine Bedingungen von denen auf der Erde unterscheiden. Um im Weltraum zu überleben, müssen viele Faktoren berücksichtigt und Vorkehrungen getroffen werden. Wissenschaftler und Forscher glauben, dass die Erforschung des Weltraums und das Verständnis des aktuellen Zustands aller Dinge dazu beitragen können, die Funktionsweise des Universums zu verstehen und sich auf mögliche Umweltkrisen vorzubereiten

Zu den häufigsten Herausforderungen, mit denen Algorithmen für maschinelles Lernen in C++ konfrontiert sind, gehören Speicherverwaltung, Multithreading, Leistungsoptimierung und Wartbarkeit. Zu den Lösungen gehören die Verwendung intelligenter Zeiger, moderner Threading-Bibliotheken, SIMD-Anweisungen und Bibliotheken von Drittanbietern sowie die Einhaltung von Codierungsstilrichtlinien und die Verwendung von Automatisierungstools. Praktische Fälle zeigen, wie man die Eigen-Bibliothek nutzt, um lineare Regressionsalgorithmen zu implementieren, den Speicher effektiv zu verwalten und leistungsstarke Matrixoperationen zu nutzen.

Übersetzer |. Rezensiert von Li Rui |. Chonglou Modelle für künstliche Intelligenz (KI) und maschinelles Lernen (ML) werden heutzutage immer komplexer, und die von diesen Modellen erzeugten Ergebnisse sind eine Blackbox, die den Stakeholdern nicht erklärt werden kann. Explainable AI (XAI) zielt darauf ab, dieses Problem zu lösen, indem es Stakeholdern ermöglicht, die Funktionsweise dieser Modelle zu verstehen, sicherzustellen, dass sie verstehen, wie diese Modelle tatsächlich Entscheidungen treffen, und Transparenz in KI-Systemen, Vertrauen und Verantwortlichkeit zur Lösung dieses Problems gewährleistet. In diesem Artikel werden verschiedene Techniken der erklärbaren künstlichen Intelligenz (XAI) untersucht, um ihre zugrunde liegenden Prinzipien zu veranschaulichen. Mehrere Gründe, warum erklärbare KI von entscheidender Bedeutung ist. Vertrauen und Transparenz: Damit KI-Systeme allgemein akzeptiert und vertrauenswürdig sind, müssen Benutzer verstehen, wie Entscheidungen getroffen werden

Maschinelles Lernen ist ein wichtiger Zweig der künstlichen Intelligenz, der Computern die Möglichkeit gibt, aus Daten zu lernen und ihre Fähigkeiten zu verbessern, ohne explizit programmiert zu werden. Maschinelles Lernen hat ein breites Anwendungsspektrum in verschiedenen Bereichen, von der Bilderkennung und der Verarbeitung natürlicher Sprache bis hin zu Empfehlungssystemen und Betrugserkennung, und es verändert unsere Lebensweise. Im Bereich des maschinellen Lernens gibt es viele verschiedene Methoden und Theorien, von denen die fünf einflussreichsten Methoden als „Fünf Schulen des maschinellen Lernens“ bezeichnet werden. Die fünf Hauptschulen sind die symbolische Schule, die konnektionistische Schule, die evolutionäre Schule, die Bayes'sche Schule und die Analogieschule. 1. Der Symbolismus, auch Symbolismus genannt, betont die Verwendung von Symbolen zum logischen Denken und zum Ausdruck von Wissen. Diese Denkrichtung glaubt, dass Lernen ein Prozess der umgekehrten Schlussfolgerung durch das Vorhandene ist
