


So verwenden Sie das Keras-Modul für Deep Learning in Python 3.x
So verwenden Sie das Keras-Modul für Deep Learning in Python 3.x
Keras ist eine fortschrittliche neuronale Netzwerkbibliothek zum Erstellen und Trainieren von Deep-Learning-Modellen. Es basiert auf Python und unterstützt Backends wie TensorFlow, Theano und MxNet. Keras bietet eine einfache und benutzerfreundliche API, mit der wir schnell verschiedene Arten von Deep-Learning-Modellen erstellen können, z. B. Multilayer Perceptron, Convolutional Neural Network und Recurrent Neural Network.
In diesem Artikel wird erläutert, wie Sie das Keras-Modul für Deep Learning in der Python 3.x-Umgebung verwenden. Wir werden zunächst Keras und seine abhängigen Bibliotheken installieren und dann anhand eines einfachen Beispielcodes lernen, wie man ein einfaches neuronales Netzwerkmodell erstellt und trainiert.
1. Keras installieren
Bevor wir beginnen, müssen wir Keras in unserer Python-Umgebung installieren. Keras kann mit pip über den folgenden Befehl installiert werden:
pip install keras
2. Erstellen Sie ein einfaches neuronales Netzwerkmodell
Als nächstes werden wir Keras verwenden, um ein einfaches neuronales Netzwerkmodell zu erstellen, um die Aufgabe zur handschriftlichen Ziffernerkennung zu implementieren. Zuerst müssen wir die erforderlichen Bibliotheken importieren:
import numpy as np from keras.models import Sequential from keras.layers import Dense from keras.utils import np_utils
Dann müssen wir den MNIST-Datensatz laden, der 60.000 Trainingsbeispiele und 10.000 Testbeispiele enthält. Jedes Beispiel ist ein 28x28-Graustufenbild, was einem [0, 9] entspricht. zwischen Zahlen. Der Datensatz kann mit dem folgenden Code geladen werden:
from keras.datasets import mnist (X_train, Y_train), (X_test, Y_test) = mnist.load_data()
Als nächstes müssen wir die Daten vorverarbeiten. Da es sich bei den Originalbilddaten um ein 28x28-Graustufenbild handelt, müssen wir sie in einen 784-dimensionalen Vektor reduzieren und die Eingabedaten normalisieren, um den Pixelwert innerhalb des Bereichs von [0, 255] bis [0, 1] zu skalieren :
X_train = X_train.reshape(X_train.shape[0], 784).astype('float32') / 255 X_test = X_test.reshape(X_test.shape[0], 784).astype('float32') / 255
Um das Modell trainieren zu können, müssen wir auch die Labels One-Hot-enkodieren. Keras stellt die Funktion np_utils.to_categorical() bereit, um uns bei diesem Schritt zu helfen:
Y_train = np_utils.to_categorical(Y_train, 10) Y_test = np_utils.to_categorical(Y_test, 10)
Jetzt können wir ein einfaches mehrschichtiges Perzeptronmodell (Multilayer Perceptron) erstellen. Dieses Modell enthält eine Eingabeebene, zwei verborgene Ebenen und eine Ausgabeebene. Sie können die Funktion Sequential() verwenden, um ein Sequenzmodell zu erstellen, und die Funktion Dense(), um Ebenen hinzuzufügen:
model = Sequential() model.add(Dense(units=512, input_dim=784, activation='relu')) model.add(Dense(units=512, activation='relu')) model.add(Dense(units=10, activation='softmax'))
Nachdem das Modell erstellt wurde, müssen wir das Modell kompilieren. Mit der Funktion „compile()“ können Sie den Modelltrainingsprozess konfigurieren. Hier können wir die Verlustfunktion, den Optimierer und die Bewertungsmetriken angeben:
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
3. Trainingsmodell und Vorhersage
Nachdem das Modell kompiliert wurde, können wir die Funktion fit() verwenden, um das Modell zu trainieren. Sie können die Trainingsdaten, die Anzahl der Trainingsrunden und die Anzahl der Proben in jedem Stapel angeben:
model.fit(X_train, Y_train, epochs=10, batch_size=128)
Nachdem das Modelltraining abgeschlossen ist, können wir die Funktion „evaluieren()“ verwenden, um die Leistung des Modells im Test zu bewerten set:
loss, accuracy = model.evaluate(X_test, Y_test) print('Test loss:', loss) print('Test accuracy:', accuracy)
Schließlich können wir die Funktion „predict_classes()“ verwenden, um die Kategorien neuer Stichproben vorherzusagen:
predictions = model.predict_classes(X_test)
Auf diese Weise haben wir den Konstruktions- und Trainingsprozess eines einfachen neuronalen Netzwerkmodells abgeschlossen.
Zusammenfassung:
In diesem Artikel wird die Verwendung des Keras-Moduls für Deep Learning in Python 3.x vorgestellt. Wir haben zunächst Keras und seine abhängigen Bibliotheken installiert und dann anhand von Beispielcode gelernt, wie man ein einfaches neuronales Netzwerkmodell erstellt und trainiert. Dies ist nur eine Einführung in Deep Learning. Keras bietet außerdem weitere Funktionen und Modelle, um unterschiedlichen Anforderungen gerecht zu werden. Ich hoffe, dass die Leser durch die Einführung dieses Artikels ein vorläufiges Verständnis von Keras und Deep Learning erlangen und es in praktischen Anwendungen nutzen können.
Das obige ist der detaillierte Inhalt vonSo verwenden Sie das Keras-Modul für Deep Learning in Python 3.x. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen

Lösung für Erlaubnisprobleme beim Betrachten der Python -Version in Linux Terminal Wenn Sie versuchen, die Python -Version in Linux Terminal anzuzeigen, geben Sie Python ein ...

Bei der Verwendung von Pythons Pandas -Bibliothek ist das Kopieren von ganzen Spalten zwischen zwei Datenrahmen mit unterschiedlichen Strukturen ein häufiges Problem. Angenommen, wir haben zwei Daten ...

Alternative Verwendung von Python -Parameteranmerkungen in der Python -Programmierung, Parameteranmerkungen sind eine sehr nützliche Funktion, die den Entwicklern helfen kann, Funktionen besser zu verstehen und zu verwenden ...

Wie lösten Python -Skripte an einem bestimmten Ort die Ausgabe in Cursorposition? Beim Schreiben von Python -Skripten ist es üblich, die vorherige Ausgabe an die Cursorposition zu löschen ...

Die Untersuchung von Rissverifizierungscodes unter Verwendung von Python in täglichen Netzwerkinteraktionen sind ein häufiger Sicherheitsmechanismus, um eine schädliche Manipulation automatisierter Programme zu verhindern ...

Viele Entwickler verlassen sich auf PYPI (PythonpackageIndex) ...

Auswahl der Python-plattformübergreifenden Desktop-Anwendungsentwicklungsbibliothek Viele Python-Entwickler möchten Desktop-Anwendungen entwickeln, die sowohl auf Windows- als auch auf Linux-Systemen ausgeführt werden können ...

Erste Schritte mit Python: Hourglas -Grafikzeichnung und Eingabeüberprüfung In diesem Artikel wird das Problem der Variablendefinition gelöst, das von einem Python -Anfänger im Hourglass -Grafikzeichnungsprogramm auftritt. Code...
