


Pandas+Pyecharts |. Visualisierung der Analyse der Beauty-Verkaufsdaten von Double Eleven
Diese Ausgabe verwendet Python, um die Double Eleven Beauty-Verkaufsdaten zu analysieren. Sehen Sie sich Folgendes an:
-
Die Anzahl der Beauty-Bestellungen und Gesamtverkäufe in den Tagen vor und nach Double Eleven
Verkaufssituation jeder Beauty-Marke
Anteil der primären/sekundären Klassifizierung von Beauty-Marken
-
Preisbox-Verteilung jeder Beauty-Marke
Durchschnittspreis jeder Beauty-Marke
Beauty-Marken-Wortwolke
und so weiter ...
Ich hoffe, es wird für alle hilfreich sein, wenn Sie Fragen haben oder Bereiche, in denen Verbesserungsbedarf besteht, können Sie an den Herausgeber wenden.
Beteiligte Bibliotheken:
Pandas – Datenverarbeitung
Pyecharts – Datenvisualisierung
import pandas as pd from pyecharts.charts import Line from pyecharts.charts import Bar from pyecharts.charts import Scatter from pyecharts.charts import Boxplot from pyecharts.charts import Pie from pyecharts.charts import WordCloud from pyecharts import options as opts from pyecharts.commons.utils import JsCode import warnings warnings.filterwarnings('ignore')
df_school = pd.read_excel('data.xlsx')
2.3 筛选有销量的数据
df1 = df.copy() df1 = df1[df1['销量']>0]

def get_line1(): line1 = ( Line() .add_xaxis(x_data) .add_yaxis("", y_data, is_smooth=True) .set_global_opts( legend_opts=opts.LegendOpts(is_show=False), visualmap_opts=opts.VisualMapOpts( is_show=False, min_ = 1500, max_ = max(y_data), range_color=range_color ), title_opts=opts.TitleOpts( title='1-双十一前后几天美妆订单数量', subtitle='-- 制图@公众号:Python当打之年 --', pos_top='1%', pos_left="1%", title_textstyle_opts=opts.TextStyleOpts(color='#fff200',font_size=20) ) ) )

def get_bar1(): bar1 = ( Bar() .add_xaxis(x_data) .add_yaxis("", y_data,label_opts=opts.LabelOpts(position='right')) .set_global_opts( legend_opts=opts.LegendOpts(is_show=False), visualmap_opts=opts.VisualMapOpts( is_show=False, min_ = min(y_data), max_ = max(y_data), dimension=0, range_color=range_color ), title_opts=opts.TitleOpts( title='3-各美妆品牌订单数量', subtitle='-- 制图@公众号:Python当打之年 --', pos_top='1%', pos_left="1%", title_textstyle_opts=opts.TextStyleOpts(color='#fff200',font_size=20) ), ) .reversal_axis() )

相宜本草的销售额、销量都是最高的,美宝莲、悦诗风吟、妮维雅、欧莱雅分列第二至五位。
3.5 一级分类占比
def get_pie1(): pie1 = ( Pie() .add( "", [list(z) for z in zip(x_data, y_data)], radius=["40%", "70%"], center=["50%", "50%"], label_opts=opts.LabelOpts(formatter="{b}: {d}%",font_size=14,font_weight=500), ) .set_global_opts( title_opts=opts.TitleOpts( title='5-一级分类占比', subtitle='-- 制图@公众号:Python当打之年 --', pos_top='1%', pos_left="1%", title_textstyle_opts=opts.TextStyleOpts(color='#fff200',font_size=20) ), legend_opts=opts.LegendOpts(is_show=False) ) )
按二级分类来看,订单量前五的分别是:套装类、清洁类、面霜类、化妆水和乳液类。
3.7 二级分类销量
3.10 Wortwolke zur Klassifizierung von Schönheitsmarken
Das obige ist der detaillierte Inhalt vonPandas+Pyecharts |. Visualisierung der Analyse der Beauty-Verkaufsdaten von Double Eleven. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen

Pandas-Installations-Tutorial: Analyse häufiger Installationsfehler und ihrer Lösungen. Es sind spezifische Codebeispiele erforderlich. Einführung: Pandas ist ein leistungsstarkes Datenanalysetool, das in der Datenbereinigung, Datenverarbeitung und Datenvisualisierung weit verbreitet ist und daher in der Branche hohes Ansehen genießt der Datenwissenschaft. Aufgrund von Umgebungskonfigurations- und Abhängigkeitsproblemen können jedoch bei der Installation von Pandas einige Schwierigkeiten und Fehler auftreten. In diesem Artikel erhalten Sie ein Pandas-Installations-Tutorial und analysieren einige häufige Installationsfehler und deren Lösungen. 1. Pandas installieren

Pandas ist ein leistungsstarkes Datenanalysetool, das verschiedene Arten von Datendateien problemlos lesen und verarbeiten kann. Unter diesen sind CSV-Dateien eines der gebräuchlichsten und am häufigsten verwendeten Datendateiformate. In diesem Artikel wird erläutert, wie Sie mit Pandas CSV-Dateien lesen und Datenanalysen durchführen, und es werden spezifische Codebeispiele bereitgestellt. 1. Importieren Sie die erforderlichen Bibliotheken. Zuerst müssen wir die Pandas-Bibliothek und andere möglicherweise benötigte verwandte Bibliotheken importieren, wie unten gezeigt: importpandasaspd 2. Lesen Sie die CSV-Datei mit Pan

Python kann Pandas mithilfe von Pip, Conda, aus dem Quellcode und mithilfe des in die IDE integrierten Paketverwaltungstools installieren. Detaillierte Einführung: 1. Verwenden Sie pip und führen Sie den Befehl „pip install pandas“ im Terminal oder in der Eingabeaufforderung aus, um Pandas zu installieren. 2. Verwenden Sie conda und führen Sie den Befehl „conda install pandas“ im Terminal oder in der Eingabeaufforderung aus, um Pandas zu installieren Installation und mehr.

Um Pandas zum korrekten Lesen von TXT-Dateien zu verwenden, sind bestimmte Codebeispiele erforderlich. Pandas ist eine weit verbreitete Python-Datenanalysebibliothek. Sie kann zur Verarbeitung einer Vielzahl von Datentypen verwendet werden, einschließlich CSV-Dateien, Excel-Dateien, SQL-Datenbanken usw. Gleichzeitig können damit auch Textdateien, beispielsweise TXT-Dateien, gelesen werden. Beim Lesen von TXT-Dateien treten jedoch manchmal Probleme auf, z. B. Codierungsprobleme, Trennzeichenprobleme usw. In diesem Artikel erfahren Sie, wie Sie TXT mit Pandas richtig lesen

Praktische Tipps zum Lesen von TXT-Dateien mit Pandas. In der Datenanalyse und Datenverarbeitung sind TXT-Dateien ein gängiges Datenformat. Die Verwendung von Pandas zum Lesen von TXT-Dateien ermöglicht eine schnelle und bequeme Datenverarbeitung. In diesem Artikel werden verschiedene praktische Techniken vorgestellt, die Ihnen dabei helfen, Pandas besser zum Lesen von TXT-Dateien zu verwenden, sowie spezifische Codebeispiele. TXT-Dateien mit Trennzeichen lesen Wenn Sie Pandas zum Lesen von TXT-Dateien mit Trennzeichen verwenden, können Sie read_c verwenden

CSV-Dateien (Comma Separated Values) werden häufig zum Speichern und Austauschen von Daten in einem einfachen Format verwendet. Bei vielen Datenverarbeitungsaufgaben besteht die Notwendigkeit, zwei oder mehr CSV-Dateien basierend auf bestimmten Spalten zusammenzuführen. Glücklicherweise kann dies mithilfe der Pandas-Bibliothek in Python leicht erreicht werden. In diesem Artikel erfahren Sie, wie Sie mit Pandas in Python zwei CSV-Dateien nach bestimmten Spalten zusammenführen. Was ist die Pandas-Bibliothek? Pandas ist eine Open-Source-Bibliothek zur Informationskontrolle und -prüfung in Python. Es bietet Werkzeuge für die Arbeit mit strukturierten Daten (z. B. Tabellen-, Zeitreihen- und mehrdimensionalen Daten) und Hochleistungsdatenstrukturen. Pandas wird häufig in den Bereichen Finanzen, Datenwissenschaft, maschinelles Lernen und anderen Bereichen eingesetzt, in denen Datenmanipulation erforderlich ist.

Die Methoden für Pandas zum Schreiben in Excel sind: 1. Installieren Sie den Datensatz. 3. Geben Sie den Namen des Arbeitsblatts an. Pandas ist eine beliebte Python-Datenanalysebibliothek, die viele leistungsstarke Datenbereinigungs- und Analysefunktionen bietet. Um Pandas-Daten in eine Excel-Datei zu schreiben, können Sie die von Pandas bereitgestellte Methode „to_excel()“ verwenden.

Schritte zum Installieren von Pandas in Python: 1. Öffnen Sie das Terminal oder die Eingabeaufforderung. 2. Geben Sie den Befehl „pip install pandas“ ein, um die Pandas-Bibliothek zu installieren. 3. Warten Sie, bis die Installation abgeschlossen ist. Anschließend können Sie die Pandas-Bibliothek importieren und verwenden im Python-Skript; 4. Stellen Sie sicher, dass Sie die entsprechende virtuelle Umgebung aktivieren, bevor Sie Pandas installieren. 5. Wenn Sie eine integrierte Entwicklungsumgebung verwenden, können Sie den Code „Pandas als PD importieren“ hinzufügen Importieren Sie die Pandas-Bibliothek.
