Heim Backend-Entwicklung Python-Tutorial Pandas+Pyecharts |. Visualisierung der Analyse der Beauty-Verkaufsdaten von Double Eleven

Pandas+Pyecharts |. Visualisierung der Analyse der Beauty-Verkaufsdaten von Double Eleven

Aug 08, 2023 pm 05:05 PM
pandas pyecharts


Diese Ausgabe verwendet Python, um die Double Eleven Beauty-Verkaufsdaten zu analysieren. Sehen Sie sich Folgendes an:

  • Die Anzahl der Beauty-Bestellungen und Gesamtverkäufe in den Tagen vor und nach Double Eleven

  • Verkaufssituation jeder Beauty-Marke

  • Anteil der primären/sekundären Klassifizierung von Beauty-Marken

  • Preisbox-Verteilung jeder Beauty-Marke

  • Durchschnittspreis jeder Beauty-Marke

  • Beauty-Marken-Wortwolke

  • und so weiter ...

Ich hoffe, es wird für alle hilfreich sein, wenn Sie Fragen haben oder Bereiche, in denen Verbesserungsbedarf besteht, können Sie an den Herausgeber wenden.

Beteiligte Bibliotheken:
Pandas – Datenverarbeitung
Pyecharts – Datenvisualisierung

P andas Datenverarbeitung

2.1 Daten lesen
import pandas as pd
from pyecharts.charts import Line
from pyecharts.charts import Bar
from pyecharts.charts import Scatter
from pyecharts.charts import Boxplot
from pyecharts.charts import Pie
from pyecharts.charts import WordCloud
from pyecharts import options as opts
from pyecharts.commons.utils import JsCode
import warnings
warnings.filterwarnings('ignore')
Nach dem Login kopieren
2.2 Dateninformationen

df_school = pd.read_excel('data.xlsx')
Nach dem Login kopieren

2.3 筛选有销量的数据

df1 = df.copy()
df1 = df1[df1['销量']>0]
Nach dem Login kopieren
Pandas+Pyecharts |. Visualisierung der Analyse der Beauty-Verkaufsdaten von Double Eleven
数据过滤后还有24479条。


3. Pyecharts数据可视化

3.1 双十一前后几天美妆订单数量
def get_line1():
    line1 = (
        Line()
        .add_xaxis(x_data)
        .add_yaxis("", y_data,
                   is_smooth=True)
        .set_global_opts(
            legend_opts=opts.LegendOpts(is_show=False),
            visualmap_opts=opts.VisualMapOpts(
                is_show=False,
                min_ = 1500,
                max_ = max(y_data),
                range_color=range_color
            ),
            title_opts=opts.TitleOpts(
                title='1-双十一前后几天美妆订单数量',
                subtitle='-- 制图@公众号:Python当打之年 --',
                pos_top='1%',
                pos_left="1%",
                title_textstyle_opts=opts.TextStyleOpts(color='#fff200',font_size=20)
            )
        )
    )
Nach dem Login kopieren
Pandas+Pyecharts |. Visualisierung der Analyse der Beauty-Verkaufsdaten von Double Eleven
在11号前几天订单量持续在比较高的状态,在11月11号后趋于平稳,应该是双十一商家提前预热,消费者的预购订单量比较大。
3.2 双十一前后几天美妆销量

Pandas+Pyecharts |. Visualisierung der Analyse der Beauty-Verkaufsdaten von Double Eleven

化妆品的购买高峰在11号前几天,在11月9号达到高峰,消费者的预购销量比较大,和订单量趋势基本保持一致。
3.3 各美妆品牌订单数量
def get_bar1():
    bar1 = (
        Bar()
        .add_xaxis(x_data)
        .add_yaxis("", y_data,label_opts=opts.LabelOpts(position='right'))
        .set_global_opts(
            legend_opts=opts.LegendOpts(is_show=False),
            visualmap_opts=opts.VisualMapOpts(
                is_show=False,
                min_ = min(y_data),
                max_ = max(y_data),
                dimension=0,
                range_color=range_color
            ),
            title_opts=opts.TitleOpts(
                title='3-各美妆品牌订单数量',
                subtitle='-- 制图@公众号:Python当打之年 --',
                pos_top='1%',
                pos_left="1%",
                title_textstyle_opts=opts.TextStyleOpts(color='#fff200',font_size=20)
            ),
        )
        .reversal_axis()
    )
Nach dem Login kopieren
Pandas+Pyecharts |. Visualisierung der Analyse der Beauty-Verkaufsdaten von Double Eleven
悦诗风吟的商品数量最多,其次为佰草集、欧莱雅。
3.4 各美妆品牌总销量

Pandas+Pyecharts |. Visualisierung der Analyse der Beauty-Verkaufsdaten von Double Eleven

相宜本草的销售额、销量都是最高的,美宝莲、悦诗风吟、妮维雅、欧莱雅分列第二至五位。

3.5 一级分类占比

def get_pie1():
    pie1 = (
        Pie()
        .add(
            "", 
            [list(z) for z in zip(x_data, y_data)],
            radius=["40%", "70%"],
            center=["50%", "50%"],
            label_opts=opts.LabelOpts(formatter="{b}: {d}%",font_size=14,font_weight=500), 
        )
        .set_global_opts(
            title_opts=opts.TitleOpts(
                title='5-一级分类占比',
                subtitle='-- 制图@公众号:Python当打之年 --',
                pos_top='1%',
                pos_left="1%",
                title_textstyle_opts=opts.TextStyleOpts(color='#fff200',font_size=20)
            ),
            legend_opts=opts.LegendOpts(is_show=False) 
        )
    )
Nach dem Login kopieren

Pandas+Pyecharts |. Visualisierung der Analyse der Beauty-Verkaufsdaten von Double Eleven

销量第一的还要是护肤品,其次是套装系列和化妆品。
3.6 二级分类占比

Pandas+Pyecharts |. Visualisierung der Analyse der Beauty-Verkaufsdaten von Double Eleven

按二级分类来看,订单量前五的分别是:套装类、清洁类、面霜类、化妆水和乳液类。

3.7 二级分类销量

Pandas+Pyecharts |. Visualisierung der Analyse der Beauty-Verkaufsdaten von Double Eleven

3,8 Preisdiagramm jeder Beauty-Marke und andere Marken sind leicht voreingenommen.

3.10 Wortwolke zur Klassifizierung von Schönheitsmarken

Pandas+Pyecharts |. Visualisierung der Analyse der Beauty-Verkaufsdaten von Double Eleven

Pandas+Pyecharts |. Visualisierung der Analyse der Beauty-Verkaufsdaten von Double Eleven

Das obige ist der detaillierte Inhalt vonPandas+Pyecharts |. Visualisierung der Analyse der Beauty-Verkaufsdaten von Double Eleven. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

R.E.P.O. Energiekristalle erklärten und was sie tun (gelber Kristall)
2 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
Repo: Wie man Teamkollegen wiederbelebt
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Abenteuer: Wie man riesige Samen bekommt
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Lösung häufiger Pandas-Installationsprobleme: Interpretation und Lösungen für Installationsfehler Lösung häufiger Pandas-Installationsprobleme: Interpretation und Lösungen für Installationsfehler Feb 19, 2024 am 09:19 AM

Pandas-Installations-Tutorial: Analyse häufiger Installationsfehler und ihrer Lösungen. Es sind spezifische Codebeispiele erforderlich. Einführung: Pandas ist ein leistungsstarkes Datenanalysetool, das in der Datenbereinigung, Datenverarbeitung und Datenvisualisierung weit verbreitet ist und daher in der Branche hohes Ansehen genießt der Datenwissenschaft. Aufgrund von Umgebungskonfigurations- und Abhängigkeitsproblemen können jedoch bei der Installation von Pandas einige Schwierigkeiten und Fehler auftreten. In diesem Artikel erhalten Sie ein Pandas-Installations-Tutorial und analysieren einige häufige Installationsfehler und deren Lösungen. 1. Pandas installieren

Lesen Sie CSV-Dateien und führen Sie eine Datenanalyse mit Pandas durch Lesen Sie CSV-Dateien und führen Sie eine Datenanalyse mit Pandas durch Jan 09, 2024 am 09:26 AM

Pandas ist ein leistungsstarkes Datenanalysetool, das verschiedene Arten von Datendateien problemlos lesen und verarbeiten kann. Unter diesen sind CSV-Dateien eines der gebräuchlichsten und am häufigsten verwendeten Datendateiformate. In diesem Artikel wird erläutert, wie Sie mit Pandas CSV-Dateien lesen und Datenanalysen durchführen, und es werden spezifische Codebeispiele bereitgestellt. 1. Importieren Sie die erforderlichen Bibliotheken. Zuerst müssen wir die Pandas-Bibliothek und andere möglicherweise benötigte verwandte Bibliotheken importieren, wie unten gezeigt: importpandasaspd 2. Lesen Sie die CSV-Datei mit Pan

Python-Pandas-Installationsmethode Python-Pandas-Installationsmethode Nov 22, 2023 pm 02:33 PM

Python kann Pandas mithilfe von Pip, Conda, aus dem Quellcode und mithilfe des in die IDE integrierten Paketverwaltungstools installieren. Detaillierte Einführung: 1. Verwenden Sie pip und führen Sie den Befehl „pip install pandas“ im Terminal oder in der Eingabeaufforderung aus, um Pandas zu installieren. 2. Verwenden Sie conda und führen Sie den Befehl „conda install pandas“ im Terminal oder in der Eingabeaufforderung aus, um Pandas zu installieren Installation und mehr.

So lesen Sie eine TXT-Datei mit Pandas richtig So lesen Sie eine TXT-Datei mit Pandas richtig Jan 19, 2024 am 08:39 AM

Um Pandas zum korrekten Lesen von TXT-Dateien zu verwenden, sind bestimmte Codebeispiele erforderlich. Pandas ist eine weit verbreitete Python-Datenanalysebibliothek. Sie kann zur Verarbeitung einer Vielzahl von Datentypen verwendet werden, einschließlich CSV-Dateien, Excel-Dateien, SQL-Datenbanken usw. Gleichzeitig können damit auch Textdateien, beispielsweise TXT-Dateien, gelesen werden. Beim Lesen von TXT-Dateien treten jedoch manchmal Probleme auf, z. B. Codierungsprobleme, Trennzeichenprobleme usw. In diesem Artikel erfahren Sie, wie Sie TXT mit Pandas richtig lesen

Praktische Tipps zum Lesen von TXT-Dateien mit Pandas Praktische Tipps zum Lesen von TXT-Dateien mit Pandas Jan 19, 2024 am 09:49 AM

Praktische Tipps zum Lesen von TXT-Dateien mit Pandas. In der Datenanalyse und Datenverarbeitung sind TXT-Dateien ein gängiges Datenformat. Die Verwendung von Pandas zum Lesen von TXT-Dateien ermöglicht eine schnelle und bequeme Datenverarbeitung. In diesem Artikel werden verschiedene praktische Techniken vorgestellt, die Ihnen dabei helfen, Pandas besser zum Lesen von TXT-Dateien zu verwenden, sowie spezifische Codebeispiele. TXT-Dateien mit Trennzeichen lesen Wenn Sie Pandas zum Lesen von TXT-Dateien mit Trennzeichen verwenden, können Sie read_c verwenden

Wie füge ich mit Pandas in Python zwei CSV-Dateien nach bestimmten Spalten zusammen? Wie füge ich mit Pandas in Python zwei CSV-Dateien nach bestimmten Spalten zusammen? Sep 08, 2023 pm 02:01 PM

CSV-Dateien (Comma Separated Values) werden häufig zum Speichern und Austauschen von Daten in einem einfachen Format verwendet. Bei vielen Datenverarbeitungsaufgaben besteht die Notwendigkeit, zwei oder mehr CSV-Dateien basierend auf bestimmten Spalten zusammenzuführen. Glücklicherweise kann dies mithilfe der Pandas-Bibliothek in Python leicht erreicht werden. In diesem Artikel erfahren Sie, wie Sie mit Pandas in Python zwei CSV-Dateien nach bestimmten Spalten zusammenführen. Was ist die Pandas-Bibliothek? Pandas ist eine Open-Source-Bibliothek zur Informationskontrolle und -prüfung in Python. Es bietet Werkzeuge für die Arbeit mit strukturierten Daten (z. B. Tabellen-, Zeitreihen- und mehrdimensionalen Daten) und Hochleistungsdatenstrukturen. Pandas wird häufig in den Bereichen Finanzen, Datenwissenschaft, maschinelles Lernen und anderen Bereichen eingesetzt, in denen Datenmanipulation erforderlich ist.

Welche Methoden gibt es für Pandas, Excel zu schreiben? Welche Methoden gibt es für Pandas, Excel zu schreiben? Nov 22, 2023 am 11:46 AM

Die Methoden für Pandas zum Schreiben in Excel sind: 1. Installieren Sie den Datensatz. 3. Geben Sie den Namen des Arbeitsblatts an. Pandas ist eine beliebte Python-Datenanalysebibliothek, die viele leistungsstarke Datenbereinigungs- und Analysefunktionen bietet. Um Pandas-Daten in eine Excel-Datei zu schreiben, können Sie die von Pandas bereitgestellte Methode „to_excel()“ verwenden.

So installieren Sie Pandas in Python So installieren Sie Pandas in Python Dec 04, 2023 pm 02:48 PM

Schritte zum Installieren von Pandas in Python: 1. Öffnen Sie das Terminal oder die Eingabeaufforderung. 2. Geben Sie den Befehl „pip install pandas“ ein, um die Pandas-Bibliothek zu installieren. 3. Warten Sie, bis die Installation abgeschlossen ist. Anschließend können Sie die Pandas-Bibliothek importieren und verwenden im Python-Skript; 4. Stellen Sie sicher, dass Sie die entsprechende virtuelle Umgebung aktivieren, bevor Sie Pandas installieren. 5. Wenn Sie eine integrierte Entwicklungsumgebung verwenden, können Sie den Code „Pandas als PD importieren“ hinzufügen Importieren Sie die Pandas-Bibliothek.

See all articles