20 Tipps zur Python-Nutzung, zum Sammeln empfohlen!
1. Verwirrende Operationen
In diesem Abschnitt werden einige verwirrende Python-Operationen verglichen. 1.1 Zufallsstichprobe mit Ersatz und Zufallsstichprobe ohne Ersatz ee
Kopieren und Variablen-Aliasing In Kombination Zusammengenommen ist es leicht zu verwechseln:import random
random.choices(seq, k=1) # 长度为k的list,有放回采样
random.sample(seq, k) # 长度为k的list,无放回采样
2、常用工具
2.1 读写 CSV 文件
import csv # 无header的读写 with open(name, 'rt', encoding='utf-8', newline='') as f: # newline=''让Python不将换行统一处理 for row in csv.reader(f): print(row[0], row[1]) # CSV读到的数据都是str类型 with open(name, mode='wt') as f: f_csv = csv.writer(f) f_csv.writerow(['symbol', 'change']) # 有header的读写 with open(name, mode='rt', newline='') as f: for row in csv.DictReader(f): print(row['symbol'], row['change']) with open(name, mode='wt') as f: header = ['symbol', 'change'] f_csv = csv.DictWriter(f, header) f_csv.writeheader() f_csv.writerow({'symbol': xx, 'change': xx})
注意,当 CSV 文件过大时会报错:_csv.Error: field larger than field limit (131072),通过修改上限解决
import sys csv.field_size_limit(sys.maxsize)
csv 还可以读以 \t 分割的数据
f = csv.reader(f, delimiter='\t')
2.2 迭代器工具
itertools 中定义了很多迭代器工具,例如子序列工具:
import itertools itertools.islice(iterable, start=None, stop, step=None) # islice('ABCDEF', 2, None) -> C, D, E, F itertools.filterfalse(predicate, iterable) # 过滤掉predicate为False的元素 # filterfalse(lambda x: x < 5, [1, 4, 6, 4, 1]) -> 6 itertools.takewhile(predicate, iterable) # 当predicate为False时停止迭代 # takewhile(lambda x: x < 5, [1, 4, 6, 4, 1]) -> 1, 4 itertools.dropwhile(predicate, iterable) # 当predicate为False时开始迭代 # dropwhile(lambda x: x < 5, [1, 4, 6, 4, 1]) -> 6, 4, 1 itertools.compress(iterable, selectors) # 根据selectors每个元素是True或False进行选择 # compress('ABCDEF', [1, 0, 1, 0, 1, 1]) -> A, C, E, F
序列排序:
sorted(iterable, key=None, reverse=False) itertools.groupby(iterable, key=None) # 按值分组,iterable需要先被排序 # groupby(sorted([1, 4, 6, 4, 1])) -> (1, iter1), (4, iter4), (6, iter6) itertools.permutations(iterable, r=None) # 排列,返回值是Tuple # permutations('ABCD', 2) -> AB, AC, AD, BA, BC, BD, CA, CB, CD, DA, DB, DC itertools.combinations(iterable, r=None) # 组合,返回值是Tuple itertools.combinations_with_replacement(...) # combinations('ABCD', 2) -> AB, AC, AD, BC, BD, CD
多个序列合并:
itertools.chain(*iterables) # 多个序列直接拼接 # chain('ABC', 'DEF') -> A, B, C, D, E, F import heapq heapq.merge(*iterables, key=None, reverse=False) # 多个序列按顺序拼接 # merge('ABF', 'CDE') -> A, B, C, D, E, F zip(*iterables) # 当最短的序列耗尽时停止,结果只能被消耗一次 itertools.zip_longest(*iterables, fillvalue=None) # 当最长的序列耗尽时停止,结果只能被消耗一次
2.3 计数器
计数器可以统计一个可迭代对象中每个元素出现的次数。
import collections # 创建 collections.Counter(iterable) # 频次 collections.Counter[key] # key出现频次 # 返回n个出现频次最高的元素和其对应出现频次,如果n为None,返回所有元素 collections.Counter.most_common(n=None) # 插入/更新 collections.Counter.update(iterable) counter1 + counter2; counter1 - counter2 # counter加减 # 检查两个字符串的组成元素是否相同 collections.Counter(list1) == collections.Counter(list2)
2.4 带默认值的 Dict
当访问不存在的 Key 时,defaultdict 会将其设置为某个默认值。
import collections collections.defaultdict(type) # 当第一次访问dict[key]时,会无参数调用type,给dict[key]提供一个初始值
2.5 有序 Dict
import collections collections.OrderedDict(items=None) # 迭代时保留原始插入顺序
3、高性能编程和调试
3.1 输出错误和警告信息
向标准错误输出信息
import sys sys.stderr.write('')
输出警告信息
import warnings warnings.warn(message, category=UserWarning) # category的取值有DeprecationWarning, SyntaxWarning, RuntimeWarning, ResourceWarning, FutureWarning
控制警告消息的输出
$ python -W all # 输出所有警告,等同于设置warnings.simplefilter('always') $ python -W ignore # 忽略所有警告,等同于设置warnings.simplefilter('ignore') $ python -W error # 将所有警告转换为异常,等同于设置warnings.simplefilter('error')
3.2 代码中测试
有时为了调试,我们想在代码中加一些代码,通常是一些 print 语句,可以写为:
# 在代码中的debug部分 if __debug__: pass
一旦调试结束,通过在命令行执行 -O 选项,会忽略这部分代码:
$ python -0 main.py
3.3 代码风格检查
使用 pylint 可以进行不少的代码风格和语法检查,能在运行之前发现一些错误
pylint main.py
3.4 代码耗时
耗时测试
$ python -m cProfile main.py
测试某代码块耗时
# 代码块耗时定义 from contextlib import contextmanager from time import perf_counter @contextmanager def timeblock(label): tic = perf_counter() try: yield finally: toc = perf_counter() print('%s : %s' % (label, toc - tic)) # 代码块耗时测试 with timeblock('counting'): pass
代码耗时优化的一些原则
Konzentrieren Sie sich auf die Optimierung dort, wo Leistungsengpässe auftreten, nicht auf den gesamten Code. Vermeiden Sie die Verwendung globaler Variablen. Lokale Variablen werden schneller gesucht als globale Variablen, und die Ausführung von Code, der globale Variablen innerhalb einer Funktion definiert, ist in der Regel 15–30 % schneller. Vermeiden Sie die Verwendung von , um auf Eigenschaften zuzugreifen. Es ist schneller, from module import name zu verwenden, um die häufig aufgerufene Klassenmitgliedsvariable self.member in eine lokale Variable einzufügen. Versuchen Sie, integrierte Datenstrukturen zu verwenden. str, list, set, dict usw. sind in C implementiert und laufen sehr schnell. Vermeiden Sie die Erstellung unnötiger Zwischenvariablen und copy.deepcopy(). String-Splicing, wie z. B. a + ':' + b + ':' + c, erzeugt viele nutzlose Zwischenvariablen, ':',join([a, b, c]) jedoch nicht effiziente wenige. Darüber hinaus müssen Sie überlegen, ob eine Zeichenfolgenverkettung erforderlich ist. Beispielsweise ist print(':'.join([a, b, c])) weniger effizient als print(a, b, c, sep=':'. ).
Das obige ist der detaillierte Inhalt von20 Tipps zur Python-Nutzung, zum Sammeln empfohlen!. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



MySQL hat eine kostenlose Community -Version und eine kostenpflichtige Enterprise -Version. Die Community -Version kann kostenlos verwendet und geändert werden, die Unterstützung ist jedoch begrenzt und für Anwendungen mit geringen Stabilitätsanforderungen und starken technischen Funktionen geeignet. Die Enterprise Edition bietet umfassende kommerzielle Unterstützung für Anwendungen, die eine stabile, zuverlässige Hochleistungsdatenbank erfordern und bereit sind, Unterstützung zu bezahlen. Zu den Faktoren, die bei der Auswahl einer Version berücksichtigt werden, gehören Kritikalität, Budgetierung und technische Fähigkeiten von Anwendungen. Es gibt keine perfekte Option, nur die am besten geeignete Option, und Sie müssen die spezifische Situation sorgfältig auswählen.

Der Artikel führt den Betrieb der MySQL -Datenbank vor. Zunächst müssen Sie einen MySQL -Client wie MySQLworkBench oder Befehlszeilen -Client installieren. 1. Verwenden Sie den Befehl mySQL-uroot-P, um eine Verbindung zum Server herzustellen und sich mit dem Stammkonto-Passwort anzumelden. 2. Verwenden Sie die Erstellung von Createdatabase, um eine Datenbank zu erstellen, und verwenden Sie eine Datenbank aus. 3.. Verwenden Sie CreateTable, um eine Tabelle zu erstellen, Felder und Datentypen zu definieren. 4. Verwenden Sie InsertInto, um Daten einzulegen, Daten abzufragen, Daten nach Aktualisierung zu aktualisieren und Daten nach Löschen zu löschen. Nur indem Sie diese Schritte beherrschen, lernen, mit gemeinsamen Problemen umzugehen und die Datenbankleistung zu optimieren, können Sie MySQL effizient verwenden.

Die MySQL-Datenbankleistung Optimierungshandbuch In ressourcenintensiven Anwendungen spielt die MySQL-Datenbank eine entscheidende Rolle und ist für die Verwaltung massiver Transaktionen verantwortlich. Mit der Erweiterung der Anwendung werden jedoch die Datenbankleistung Engpässe häufig zu einer Einschränkung. In diesem Artikel werden eine Reihe effektiver Strategien zur Leistungsoptimierung von MySQL -Leistung untersucht, um sicherzustellen, dass Ihre Anwendung unter hohen Lasten effizient und reaktionsschnell bleibt. Wir werden tatsächliche Fälle kombinieren, um eingehende Schlüsseltechnologien wie Indexierung, Abfrageoptimierung, Datenbankdesign und Caching zu erklären. 1. Das Design der Datenbankarchitektur und die optimierte Datenbankarchitektur sind der Eckpfeiler der MySQL -Leistungsoptimierung. Hier sind einige Kernprinzipien: Die Auswahl des richtigen Datentyps und die Auswahl des kleinsten Datentyps, der den Anforderungen entspricht, kann nicht nur Speicherplatz speichern, sondern auch die Datenverarbeitungsgeschwindigkeit verbessern.

Hadidb: Eine leichte, hochrangige skalierbare Python-Datenbank Hadidb (HadIDB) ist eine leichte Datenbank in Python mit einem hohen Maß an Skalierbarkeit. Installieren Sie HadIDB mithilfe der PIP -Installation: PipinstallHadIDB -Benutzerverwaltung erstellen Benutzer: createUser (), um einen neuen Benutzer zu erstellen. Die Authentication () -Methode authentifiziert die Identität des Benutzers. fromHadidb.operationImportUseruser_obj = user ("admin", "admin") user_obj.

Es ist unmöglich, das MongoDB -Passwort direkt über Navicat anzuzeigen, da es als Hash -Werte gespeichert ist. So rufen Sie verlorene Passwörter ab: 1. Passwörter zurücksetzen; 2. Überprüfen Sie die Konfigurationsdateien (können Hash -Werte enthalten). 3. Überprüfen Sie Codes (May Hardcode -Passwörter).

MySQL kann ohne Netzwerkverbindungen für die grundlegende Datenspeicherung und -verwaltung ausgeführt werden. Für die Interaktion mit anderen Systemen, Remotezugriff oder Verwendung erweiterte Funktionen wie Replikation und Clustering ist jedoch eine Netzwerkverbindung erforderlich. Darüber hinaus sind Sicherheitsmaßnahmen (wie Firewalls), Leistungsoptimierung (Wählen Sie die richtige Netzwerkverbindung) und die Datensicherung für die Verbindung zum Internet von entscheidender Bedeutung.

MySQL Workbench kann eine Verbindung zu MariADB herstellen, vorausgesetzt, die Konfiguration ist korrekt. Wählen Sie zuerst "Mariadb" als Anschlusstyp. Stellen Sie in der Verbindungskonfiguration Host, Port, Benutzer, Kennwort und Datenbank korrekt ein. Überprüfen Sie beim Testen der Verbindung, ob der Mariadb -Dienst gestartet wird, ob der Benutzername und das Passwort korrekt sind, ob die Portnummer korrekt ist, ob die Firewall Verbindungen zulässt und ob die Datenbank vorhanden ist. Verwenden Sie in fortschrittlicher Verwendung die Verbindungspooling -Technologie, um die Leistung zu optimieren. Zu den häufigen Fehlern gehören unzureichende Berechtigungen, Probleme mit Netzwerkverbindung usw. Bei Debugging -Fehlern, sorgfältige Analyse von Fehlerinformationen und verwenden Sie Debugging -Tools. Optimierung der Netzwerkkonfiguration kann die Leistung verbessern

Für Produktionsumgebungen ist in der Regel ein Server erforderlich, um MySQL auszuführen, aus Gründen, einschließlich Leistung, Zuverlässigkeit, Sicherheit und Skalierbarkeit. Server haben normalerweise leistungsstärkere Hardware, redundante Konfigurationen und strengere Sicherheitsmaßnahmen. Bei kleinen Anwendungen mit niedriger Last kann MySQL auf lokalen Maschinen ausgeführt werden, aber Ressourcenverbrauch, Sicherheitsrisiken und Wartungskosten müssen sorgfältig berücksichtigt werden. Für eine größere Zuverlässigkeit und Sicherheit sollte MySQL auf Cloud oder anderen Servern bereitgestellt werden. Die Auswahl der entsprechenden Serverkonfiguration erfordert eine Bewertung basierend auf Anwendungslast und Datenvolumen.
