Heim Backend-Entwicklung Python-Tutorial Pandas+Pyecharts |. Visualisierung der Arzneimittelverkaufsdaten im Krankenhaus

Pandas+Pyecharts |. Visualisierung der Arzneimittelverkaufsdaten im Krankenhaus

Aug 10, 2023 pm 02:43 PM
python pandas pyecharts


In dieser Ausgabe analysieren wir die Arzneimittelverkaufsdaten eines bestimmten Krankenhauses innerhalb eines halben Jahres, um zu sehen, welche Krankenhäuser mehr Arzneimittelkäufer haben, an welchen Tagen mehr Arzneimittelkäufer usw. Wir hoffen, dass dies der Fall ist Seien Sie hilfreich für unsere Freunde.
Beteiligte Bibliotheken:
  • Pandas – Datenverarbeitung

  • .

    Pyecharts – Datenvisualisierung

  • Sammlungen – Datenstatistik

Visualisierungsteil:

  • Linie – Liniendiagramm
  • Balken – Balkendiagramm
  • Kalender – Kalender
  • stylecloud — Wortwolke

Kommen wir zum Punkt~~

P andas Datenverarbeitung

2.1 Daten lesen
import jieba
import stylecloud
import pandas as pd
from PIL import Image
from collections import Counter
from pyecharts.charts import Geo
from pyecharts.charts import Bar
from pyecharts.charts import Line
from pyecharts.charts import Pie
from pyecharts.charts import Calendar
from pyecharts.charts import WordCloud
from pyecharts import options as opts
from pyecharts.commons.utils import JsCode
from pyecharts.globals import ThemeType,SymbolType,ChartType
Nach dem Login kopieren
Ergebnis:

2.2 Datengröße
df = pd.read_excel("医院药品销售数据.xlsx")
Nach dem Login kopieren
df.shape
Nach dem Login kopieren
insgesamt

6578

Pharmakaufdaten
.

2.3 查看索引、数据类型和内存信息

df.info()
Nach dem Login kopieren
部分列存在数据缺失。
Nach dem Login kopieren

2.4 统计空值数据

df.isnull().sum()
Nach dem Login kopieren

Pandas+Pyecharts |. Visualisierung der Arzneimittelverkaufsdaten im Krankenhaus

2.5 输出空行

df[df.isnull().T.any()]
Nach dem Login kopieren
Pandas+Pyecharts |. Visualisierung der Arzneimittelverkaufsdaten im Krankenhaus
因为购药时间在后面的分析中会用到,所以我们将购药时间为空的行删除,社保卡号用"000"填充,社保卡号、商品编码为一串数字,应为str类型,销售数量应为int类型:
df1 = df.copy()
df1 = df1.dropna(subset=['购药时间'])
df1[df1.isnull().T.any()]
df1['社保卡号'].fillna('0000', inplace=True)
df1['社保卡号'] = df1['社保卡号'].astype(str)
df1['商品编码'] = df1['商品编码'].astype(str)
df1['销售数量'] = df1['销售数量'].astype(int)
Nach dem Login kopieren
Pandas+Pyecharts |. Visualisierung der Arzneimittelverkaufsdaten im Krankenhaus

2.6 销售数量,应收金额,实收金额三列的统计情况

df1[['销售数量','应收金额','实收金额']].describe()
Nach dem Login kopieren
Pandas+Pyecharts |. Visualisierung der Arzneimittelverkaufsdaten im Krankenhaus
数据中存在负值,显然不合理,我们将其转换为正值:
df2 = df1.copy()
df2['销售数量'] = df2['销售数量'].abs()
df2['应收金额'] = df2['应收金额'].abs()
df2['实收金额'] = df2['实收金额'].abs()
Nach dem Login kopieren
Pandas+Pyecharts |. Visualisierung der Arzneimittelverkaufsdaten im Krankenhaus

2.7 列拆分(购药时间列拆分为两列)

df3 = df2.copy()
df3[['购药日期', '星期']] = df3['购药时间'].str.split(' ', 2, expand = True)
df3 = df3[['购药日期', '星期','社保卡号','商品编码', '商品名称', '销售数量', '应收金额', '实收金额' ]]
Nach dem Login kopieren

Pandas+Pyecharts |. Visualisierung der Arzneimittelverkaufsdaten im Krankenhaus


3. Pyecharts数据可视化

3.1 一周各天药品销量柱状图

代码:

color_js = """new echarts.graphic.LinearGradient(0, 1, 0, 0,
    [{offset: 0, color: '#FFFFFF'}, {offset: 1, color: '#ed1941'}], false)"""

g1 = df3.groupby('星期').sum()
x_data = list(g1.index)
y_data = g1['销售数量'].values.tolist()
b1 = (
        Bar()
        .add_xaxis(x_data)
        .add_yaxis('',y_data ,itemstyle_opts=opts.ItemStyleOpts(color=JsCode(color_js)))
        .set_global_opts(title_opts=opts.TitleOpts(title='一周各天药品销量',pos_top='2%',pos_left = 'center'),
            legend_opts=opts.LegendOpts(is_show=False),
            xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=-15)),
            yaxis_opts=opts.AxisOpts(name="销量",name_location='middle',name_gap=50,name_textstyle_opts=opts.TextStyleOpts(font_size=16)))

    )
b1.render_notebook()
Nach dem Login kopieren

Pandas+Pyecharts |. Visualisierung der Arzneimittelverkaufsdaten im Krankenhaus

每天销量整理相差不大,周五、周六偏于购药高峰

3.2 药品销量前十柱状图

代码:

color_js = """new echarts.graphic.LinearGradient(0, 1, 0, 0,
    [{offset: 0, color: '#FFFFFF'}, {offset: 1, color: '#08519c'}], false)"""

g2 = df3.groupby('商品名称').sum().sort_values(by='销售数量', ascending=False)
x_data = list(g2.index)[:10]
y_data = g2['销售数量'].values.tolist()[:10]
b2 = (
        Bar()
        .add_xaxis(x_data)
        .add_yaxis('',y_data ,itemstyle_opts=opts.ItemStyleOpts(color=JsCode(color_js)))
        .set_global_opts(title_opts=opts.TitleOpts(title='药品销量前十',pos_top='2%',pos_left = 'center'),
            legend_opts=opts.LegendOpts(is_show=False),
            xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=-15)),
            yaxis_opts=opts.AxisOpts(name="销量",name_location='middle',name_gap=50,name_textstyle_opts=opts.TextStyleOpts(font_size=16)))

    )
b2.render_notebook()
Nach dem Login kopieren
Pandas+Pyecharts |. Visualisierung der Arzneimittelverkaufsdaten im Krankenhaus

可以看出:苯磺 酸氨氯地平片(安内真)开博通酒石酸美托洛尔片(倍他乐克)等治疗高血压、心绞痛药物购买量比较多。。

3.3 Top-Ten-Histogramm der Arzneimittelverkäufe

Pandas+Pyecharts |. Visualisierung der Arzneimittelverkaufsdaten im Krankenhaus

Umsätze sind grundsätzlich proportional zum Umsatz. 3.4 Tägliche Bestellungen für eine Woche und der Samstag ist tendenziell mehr Shopping-Drogen-Hochsaison
.
3,5 Anzahl der Bestellungen pro Tag in einem natürlichen Monat

Pandas+Pyecharts |. Visualisierung der Arzneimittelverkaufsdaten im Krankenhaus

Es ist ersichtlich, dass der 5., 15. und 25. die Spitzenzeiten für Arzneimittelverkäufe sind, insbesondere der 15. eines jeden Monats . 3,6 Kalenderdiagramm

Aus Platzgründen werden einige Codes nicht vollständig angezeigt. Bei Bedarf können Sie sie auch online abrufen (einschließlich aller Code- und Datendateien) https://www.heywhale.com/mw/project/61b83bd9c63c620017c629bc

Das obige ist der detaillierte Inhalt vonPandas+Pyecharts |. Visualisierung der Arzneimittelverkaufsdaten im Krankenhaus. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

R.E.P.O. Energiekristalle erklärten und was sie tun (gelber Kristall)
1 Monate vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Beste grafische Einstellungen
1 Monate vor By 尊渡假赌尊渡假赌尊渡假赌
Will R.E.P.O. Crossplay haben?
1 Monate vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

PHP und Python: Code Beispiele und Vergleich PHP und Python: Code Beispiele und Vergleich Apr 15, 2025 am 12:07 AM

PHP und Python haben ihre eigenen Vor- und Nachteile, und die Wahl hängt von den Projektbedürfnissen und persönlichen Vorlieben ab. 1.PHP eignet sich für eine schnelle Entwicklung und Wartung großer Webanwendungen. 2. Python dominiert das Gebiet der Datenwissenschaft und des maschinellen Lernens.

Wie ist die GPU -Unterstützung für Pytorch bei CentOS? Wie ist die GPU -Unterstützung für Pytorch bei CentOS? Apr 14, 2025 pm 06:48 PM

Aktivieren Sie die Pytorch -GPU -Beschleunigung am CentOS -System erfordert die Installation von CUDA-, CUDNN- und GPU -Versionen von Pytorch. Die folgenden Schritte führen Sie durch den Prozess: Cuda und Cudnn Installation Bestimmen Sie die CUDA-Version Kompatibilität: Verwenden Sie den Befehl nvidia-smi, um die von Ihrer NVIDIA-Grafikkarte unterstützte CUDA-Version anzuzeigen. Beispielsweise kann Ihre MX450 -Grafikkarte CUDA11.1 oder höher unterstützen. Download und installieren Sie Cudatoolkit: Besuchen Sie die offizielle Website von Nvidiacudatoolkit und laden Sie die entsprechende Version gemäß der höchsten CUDA -Version herunter und installieren Sie sie, die von Ihrer Grafikkarte unterstützt wird. Installieren Sie die Cudnn -Bibliothek:

Python gegen JavaScript: Community, Bibliotheken und Ressourcen Python gegen JavaScript: Community, Bibliotheken und Ressourcen Apr 15, 2025 am 12:16 AM

Python und JavaScript haben ihre eigenen Vor- und Nachteile in Bezug auf Gemeinschaft, Bibliotheken und Ressourcen. 1) Die Python-Community ist freundlich und für Anfänger geeignet, aber die Front-End-Entwicklungsressourcen sind nicht so reich wie JavaScript. 2) Python ist leistungsstark in Bibliotheken für Datenwissenschaft und maschinelles Lernen, während JavaScript in Bibliotheken und Front-End-Entwicklungsbibliotheken und Frameworks besser ist. 3) Beide haben reichhaltige Lernressourcen, aber Python eignet sich zum Beginn der offiziellen Dokumente, während JavaScript mit Mdnwebdocs besser ist. Die Wahl sollte auf Projektbedürfnissen und persönlichen Interessen beruhen.

Detaillierte Erklärung des Docker -Prinzips Detaillierte Erklärung des Docker -Prinzips Apr 14, 2025 pm 11:57 PM

Docker verwendet Linux -Kernel -Funktionen, um eine effiziente und isolierte Anwendungsumgebung zu bieten. Sein Arbeitsprinzip lautet wie folgt: 1. Der Spiegel wird als schreibgeschützte Vorlage verwendet, die alles enthält, was Sie für die Ausführung der Anwendung benötigen. 2. Das Union File System (UnionFS) stapelt mehrere Dateisysteme, speichert nur die Unterschiede, speichert Platz und beschleunigt. 3. Der Daemon verwaltet die Spiegel und Container, und der Kunde verwendet sie für die Interaktion. 4. Namespaces und CGroups implementieren Container -Isolation und Ressourcenbeschränkungen; 5. Mehrere Netzwerkmodi unterstützen die Containerverbindung. Nur wenn Sie diese Kernkonzepte verstehen, können Sie Docker besser nutzen.

Miniopen CentOS -Kompatibilität Miniopen CentOS -Kompatibilität Apr 14, 2025 pm 05:45 PM

Minio-Objektspeicherung: Hochleistungs-Bereitstellung im Rahmen von CentOS System Minio ist ein hochleistungsfähiges, verteiltes Objektspeichersystem, das auf der GO-Sprache entwickelt wurde und mit Amazons3 kompatibel ist. Es unterstützt eine Vielzahl von Kundensprachen, darunter Java, Python, JavaScript und Go. In diesem Artikel wird kurz die Installation und Kompatibilität von Minio zu CentOS -Systemen vorgestellt. CentOS -Versionskompatibilitätsminio wurde in mehreren CentOS -Versionen verifiziert, einschließlich, aber nicht beschränkt auf: CentOS7.9: Bietet einen vollständigen Installationshandbuch für die Clusterkonfiguration, die Umgebungsvorbereitung, die Einstellungen von Konfigurationsdateien, eine Festplattenpartitionierung und Mini

Wie man eine verteilte Schulung von Pytorch auf CentOS betreibt Wie man eine verteilte Schulung von Pytorch auf CentOS betreibt Apr 14, 2025 pm 06:36 PM

Pytorch Distributed Training on CentOS -System erfordert die folgenden Schritte: Pytorch -Installation: Die Prämisse ist, dass Python und PIP im CentOS -System installiert sind. Nehmen Sie abhängig von Ihrer CUDA -Version den entsprechenden Installationsbefehl von der offiziellen Pytorch -Website ab. Für CPU-Schulungen können Sie den folgenden Befehl verwenden: PipinstallTorChTorChVisionTorChaudio Wenn Sie GPU-Unterstützung benötigen, stellen Sie sicher, dass die entsprechende Version von CUDA und CUDNN installiert ist und die entsprechende Pytorch-Version für die Installation verwenden. Konfiguration der verteilten Umgebung: Verteiltes Training erfordert in der Regel mehrere Maschinen oder mehrere Maschinen-Mehrfach-GPUs. Ort

So wählen Sie die Pytorch -Version auf CentOS aus So wählen Sie die Pytorch -Version auf CentOS aus Apr 14, 2025 pm 06:51 PM

Bei der Installation von PyTorch am CentOS -System müssen Sie die entsprechende Version sorgfältig auswählen und die folgenden Schlüsselfaktoren berücksichtigen: 1. Kompatibilität der Systemumgebung: Betriebssystem: Es wird empfohlen, CentOS7 oder höher zu verwenden. CUDA und CUDNN: Pytorch -Version und CUDA -Version sind eng miteinander verbunden. Beispielsweise erfordert Pytorch1.9.0 CUDA11.1, während Pytorch2.0.1 CUDA11.3 erfordert. Die Cudnn -Version muss auch mit der CUDA -Version übereinstimmen. Bestimmen Sie vor der Auswahl der Pytorch -Version unbedingt, dass kompatible CUDA- und CUDNN -Versionen installiert wurden. Python -Version: Pytorch Official Branch

So aktualisieren Sie Pytorch auf die neueste Version von CentOS So aktualisieren Sie Pytorch auf die neueste Version von CentOS Apr 14, 2025 pm 06:15 PM

Das Aktualisieren von PyTorch auf der neuesten Version von CentOS kann die folgenden Schritte ausführen: Methode 1: Aktualisieren von PIP mit PIP: Stellen Sie zunächst sicher, dass Ihr PIP die neueste Version ist, da ältere Versionen von PIP möglicherweise nicht in der Lage sind, die neueste Version von PyTorch ordnungsgemäß zu installieren. Pipinstall-upgradePip Die alte Version von Pytorch (falls installiert): PipuninstallTorChTorChVisionTorChaudio-Installation Neueste

See all articles