Interviewer: Wie kann man schnell zig Millionen Daten abfragen?
Schauen wir uns zunächst eine Interviewszene an:
Interviewer: Reden wir über 10 Millionen Daten, wie haben Sie sie abgefragt? Bruder: Fragen Sie direkt per Paging ab, verwenden Sie Limit-Paging. Interviewer: Haben Sie es schon einmal in der Praxis gemacht? Bruder: Es muss einen geben
Vielleicht sind einige Freunde noch nie auf eine Tabelle mit zig Millionen Daten gestoßen und wissen nicht, was passiert, wenn zig Millionen Daten abgefragt werden.
Heute werde ich Sie durch eine praktische Operation führen. Dieses Mal basiert es auf der MySQL 5.7.26-Version zum Testen
Vorbereiten von Daten
Was tun, wenn Sie keine 10 Millionen Daten haben? ?
Erstellen
Code zum Erstellen von 10 Millionen? Das ist unmöglich, es ist zu langsam und es kann einen ganzen Tag dauern. Sie können Datenbankskripte verwenden, um sie viel schneller auszuführen.
Tabelle erstellen
CREATE TABLE `user_operation_log` ( `id` int(11) NOT NULL AUTO_INCREMENT, `user_id` varchar(64) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL, `ip` varchar(20) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL, `op_data` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL, `attr1` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL, `attr2` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL, `attr3` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL, `attr4` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL, `attr5` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL, `attr6` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL, `attr7` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL, `attr8` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL, `attr9` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL, `attr10` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL, `attr11` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL, `attr12` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL, PRIMARY KEY (`id`) USING BTREE ) ENGINE = InnoDB AUTO_INCREMENT = 1 CHARACTER SET = utf8mb4 COLLATE = utf8mb4_general_ci ROW_FORMAT = Dynamic;
Datenskript erstellen
Mit der Stapeleinfügung ist die Effizienz viel schneller und alle 1000 Elemente werden zu groß, was auch zu einer langsamen Stapeleinfügungseffizienz führt
DELIMITER ;; CREATE PROCEDURE batch_insert_log() BEGIN DECLARE i INT DEFAULT 1; DECLARE userId INT DEFAULT 10000000; set @execSql = 'INSERT INTO `test`.`user_operation_log`(`user_id`, `ip`, `op_data`, `attr1`, `attr2`, `attr3`, `attr4`, `attr5`, `attr6`, `attr7`, `attr8`, `attr9`, `attr10`, `attr11`, `attr12`) VALUES'; set @execData = ''; WHILE i<=10000000 DO set @attr = "'测试很长很长很长很长很长很长很长很长很长很长很长很长很长很长很长很长很长的属性'"; set @execData = concat(@execData, "(", userId + i, ", '10.0.69.175', '用户登录操作'", ",", @attr, ",", @attr, ",", @attr, ",", @attr, ",", @attr, ",", @attr, ",", @attr, ",", @attr, ",", @attr, ",", @attr, ",", @attr, ",", @attr, ")"); if i % 1000 = 0 then set @stmtSql = concat(@execSql, @execData,";"); prepare stmt from @stmtSql; execute stmt; DEALLOCATE prepare stmt; commit; set @execData = ""; else set @execData = concat(@execData, ","); end if; SET i=i+1; END WHILE; END;; DELIMITER ;
开始测试
田哥的电脑配置比较低:win10 标压渣渣i5 读写约500MB的SSD
由于配置低,本次测试只准备了3148000条数据,占用了磁盘5G(还没建索引的情况下),跑了38min,电脑配置好的同学,可以插入多点数据测试
SELECT count(1) FROM `user_operation_log`
返回结果:3148000
三次查询时间分别为:
14060 ms 13755 ms 13447 ms
普通分页查询
MySQL 支持 LIMIT 语句来选取指定的条数数据, Oracle 可以使用 ROWNUM 来选取。
MySQL分页查询语法如下:
SELECT * FROM table LIMIT [offset,] rows | rows OFFSET offset
第一个参数指定第一个返回记录行的偏移量 第二个参数指定返回记录行的最大数目
下面我们开始测试查询结果:
SELECT * FROM `user_operation_log` LIMIT 10000, 10
查询3次时间分别为:
59 ms 49 ms 50 ms
这样看起来速度还行,不过是本地数据库,速度自然快点。
换个角度来测试
相同偏移量,不同数据量
SELECT * FROM `user_operation_log` LIMIT 10000, 10 SELECT * FROM `user_operation_log` LIMIT 10000, 100 SELECT * FROM `user_operation_log` LIMIT 10000, 1000 SELECT * FROM `user_operation_log` LIMIT 10000, 10000 SELECT * FROM `user_operation_log` LIMIT 10000, 100000 SELECT * FROM `user_operation_log` LIMIT 10000, 1000000
查询时间如下:
Menge | Erstes Mal | Zweites Mal | Drittes Mal |
---|---|---|---|
10. Artikel | 53ms | 52ms | 47ms |
100 Artikel | 50ms | 60ms | 55ms |
1000 Artikel | 61ms | 74ms | 60ms |
10000 Artikel | 164ms | 180ms | 217ms |
100000 Artikel | 1609ms | 1741ms | 1764ms |
1000000 Artikel | 16219ms | 16889ms | 17081ms |
Aus den obigen Ergebnissen können wir schließen: Je größer die Datenmenge, desto länger dauert es
相同数据量,不同偏移量
SELECT * FROM `user_operation_log` LIMIT 100, 100 SELECT * FROM `user_operation_log` LIMIT 1000, 100 SELECT * FROM `user_operation_log` LIMIT 10000, 100 SELECT * FROM `user_operation_log` LIMIT 100000, 100 SELECT * FROM `user_operation_log` LIMIT 1000000, 100
偏移量 | 第一次 | 第二次 | 第三次 |
---|---|---|---|
100 | 36ms | 40ms | 36ms |
1000 | 31ms | 38ms | 32ms |
10000 | 53ms | 48ms | 51ms |
100000 | 622ms | 576ms | 627ms |
1000000 | 4891ms | 5076ms | 4856ms |
从上面结果可以得出结束:偏移量越大,花费时间越长
SELECT * FROM `user_operation_log` LIMIT 100, 100 SELECT id, attr FROM `user_operation_log` LIMIT 100, 100
如何优化
既然我们经过上面一番的折腾,也得出了结论,针对上面两个问题:偏移大、数据量大,我们分别着手优化
优化偏移量大问题
采用子查询方式
我们可以先定位偏移位置的 id,然后再查询数据
SELECT * FROM `user_operation_log` LIMIT 1000000, 10 SELECT id FROM `user_operation_log` LIMIT 1000000, 1 SELECT * FROM `user_operation_log` WHERE id >= (SELECT id FROM `user_operation_log` LIMIT 1000000, 1) LIMIT 10
查询结果如下:
SQL | Es braucht Zeit |
---|---|
Der erste | 4818ms |
Der zweite (ohne Index) | 4329ms |
Artikel 2 (mit Index) ) | 199ms |
Der dritte Artikel (ohne Index) | 4319ms |
Der dritte Artikel (mit Index) | 201ms |
从上面结果得出结论:
第一条花费的时间最大,第三条比第一条稍微好点 子查询使用索引速度更快
缺点:只适用于id递增的情况
id非递增的情况可以使用以下写法,但这种缺点是分页查询只能放在子查询里面
注意:某些 mysql 版本不支持在 in 子句中使用 limit,所以采用了多个嵌套select
SELECT * FROM `user_operation_log` WHERE id IN (SELECT t.id FROM (SELECT id FROM `user_operation_log` LIMIT 1000000, 10) AS t)
采用 id 限定方式
这种方法要求更高些,id必须是连续递增,而且还得计算id的范围,然后使用 between,sql如下
SELECT * FROM `user_operation_log` WHERE id between 1000000 AND 1000100 LIMIT 100 SELECT * FROM `user_operation_log` WHERE id >= 1000000 LIMIT 100
查询结果如下:
sql | 花费时间 |
---|---|
第一条 | 22ms |
第二条 | 21ms |
从结果可以看出这种方式非常快
注意:这里的 LIMIT 是限制了条数,没有采用偏移量
优化数据量大问题
返回结果的数据量也会直接影响速度
SELECT * FROM `user_operation_log` LIMIT 1, 1000000 SELECT id FROM `user_operation_log` LIMIT 1, 1000000 SELECT id, user_id, ip, op_data, attr1, attr2, attr3, attr4, attr5, attr6, attr7, attr8, attr9, attr10, attr11, attr12 FROM `user_operation_log` LIMIT 1, 1000000
查询结果如下:
sql | 花费时间 |
---|---|
第一条 | 15676ms |
第二条 | 7298ms |
第三条 | 15960ms |
Aus den Ergebnissen geht hervor, dass durch die Reduzierung unnötiger Spalten auch die Abfrageeffizienz erheblich verbessert werden kann.
Die Geschwindigkeit der ersten und dritten Abfrage ist fast gleich, also warum sollte ich mich beschweren? So viele Felder schreiben? , einfach * und schon sind Sie fertig
Beachten Sie, dass sich mein MySQL-Server und mein MySQL-Client auf demselben Computer befinden, sodass qualifizierte Studenten den Client und MySQL separat testen können
SELECT * Das ist der Fall nicht Riecht es gut?
Übrigens möchte ich hinzufügen, warum SELECT * verboten werden sollte. Ist es nicht köstlich, weil es einfach und sinnlos ist?
Hauptsächlich zwei Punkte:
Bei Verwendung von „SELECT *“ muss die Datenbank mehr Objekte, Felder, Berechtigungen, Attribute und andere verwandte Inhalte analysieren. Wenn die SQL-Anweisungen komplex sind und es viele schwierige Analysen gibt, verursacht dies große Probleme Schäden an der Datenbankbelastung. Erhöht den Netzwerkaufwand. * Manchmal werden versehentlich unnötige und große Textfelder wie log und IconMD5 hinzugefügt, und die Datenübertragungsgröße nimmt geometrisch zu. Insbesondere da sich MySQL und die Anwendung nicht auf demselben Rechner befinden, ist dieser Overhead sehr offensichtlich.
Ende
Abschließend hoffe ich, dass Sie es selbst üben können und auf jeden Fall mehr gewinnen werden!
Das obige ist der detaillierte Inhalt vonInterviewer: Wie kann man schnell zig Millionen Daten abfragen?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen

Sie können PhpMyAdmin in den folgenden Schritten öffnen: 1. Melden Sie sich beim Website -Bedienfeld an; 2. Finden und klicken Sie auf das Symbol phpmyadmin. 3. Geben Sie MySQL -Anmeldeinformationen ein; 4. Klicken Sie auf "Login".

MySQL ist ein Open Source Relational Database Management -System, das hauptsächlich zum schnellen und zuverlässigen Speicher und Abrufen von Daten verwendet wird. Sein Arbeitsprinzip umfasst Kundenanfragen, Abfragebedingungen, Ausführung von Abfragen und Rückgabergebnissen. Beispiele für die Nutzung sind das Erstellen von Tabellen, das Einsetzen und Abfragen von Daten sowie erweiterte Funktionen wie Join -Operationen. Häufige Fehler umfassen SQL -Syntax, Datentypen und Berechtigungen sowie Optimierungsvorschläge umfassen die Verwendung von Indizes, optimierte Abfragen und die Partitionierung von Tabellen.

Die Position von MySQL in Datenbanken und Programmierung ist sehr wichtig. Es handelt sich um ein Open -Source -Verwaltungssystem für relationale Datenbankverwaltung, das in verschiedenen Anwendungsszenarien häufig verwendet wird. 1) MySQL bietet effiziente Datenspeicher-, Organisations- und Abruffunktionen und unterstützt Systeme für Web-, Mobil- und Unternehmensebene. 2) Es verwendet eine Client-Server-Architektur, unterstützt mehrere Speichermotoren und Indexoptimierung. 3) Zu den grundlegenden Verwendungen gehören das Erstellen von Tabellen und das Einfügen von Daten, und erweiterte Verwendungen beinhalten Multi-Table-Verknüpfungen und komplexe Abfragen. 4) Häufig gestellte Fragen wie SQL -Syntaxfehler und Leistungsprobleme können durch den Befehl erklären und langsam abfragen. 5) Die Leistungsoptimierungsmethoden umfassen die rationale Verwendung von Indizes, eine optimierte Abfrage und die Verwendung von Caches. Zu den Best Practices gehört die Verwendung von Transaktionen und vorbereiteten Staten

MySQL wird für seine Leistung, Zuverlässigkeit, Benutzerfreundlichkeit und Unterstützung der Gemeinschaft ausgewählt. 1.MYSQL bietet effiziente Datenspeicher- und Abruffunktionen, die mehrere Datentypen und erweiterte Abfragevorgänge unterstützen. 2. Übernehmen Sie die Architektur der Client-Server und mehrere Speichermotoren, um die Transaktion und die Abfrageoptimierung zu unterstützen. 3. Einfach zu bedienend unterstützt eine Vielzahl von Betriebssystemen und Programmiersprachen. V.

Apache verbindet eine Verbindung zu einer Datenbank erfordert die folgenden Schritte: Installieren Sie den Datenbanktreiber. Konfigurieren Sie die Datei web.xml, um einen Verbindungspool zu erstellen. Erstellen Sie eine JDBC -Datenquelle und geben Sie die Verbindungseinstellungen an. Verwenden Sie die JDBC -API, um über den Java -Code auf die Datenbank zuzugreifen, einschließlich Verbindungen, Erstellen von Anweisungen, Bindungsparametern, Ausführung von Abfragen oder Aktualisierungen und Verarbeitungsergebnissen.

Der Prozess des Startens von MySQL in Docker besteht aus den folgenden Schritten: Ziehen Sie das MySQL -Image zum Erstellen und Starten des Containers an, setzen

Die Hauptaufgabe von MySQL in Webanwendungen besteht darin, Daten zu speichern und zu verwalten. 1.Mysql verarbeitet effizient Benutzerinformationen, Produktkataloge, Transaktionsunterlagen und andere Daten. 2. Durch die SQL -Abfrage können Entwickler Informationen aus der Datenbank extrahieren, um dynamische Inhalte zu generieren. 3.Mysql arbeitet basierend auf dem Client-Server-Modell, um eine akzeptable Abfragegeschwindigkeit sicherzustellen.

Die Installation von MySQL auf CentOS umfasst die folgenden Schritte: Hinzufügen der entsprechenden MySQL Yum -Quelle. Führen Sie den Befehl mySQL-server aus, um den MySQL-Server zu installieren. Verwenden Sie den Befehl mySQL_SECURE_INSTALLATION, um Sicherheitseinstellungen vorzunehmen, z. B. das Festlegen des Stammbenutzerkennworts. Passen Sie die MySQL -Konfigurationsdatei nach Bedarf an. Tune MySQL -Parameter und optimieren Sie Datenbanken für die Leistung.
